精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3+ax2+b,其中a,b∈R.
(1)若曲线y=f(x)在点(-1,f(-1))处的切线方程是3x+y+2=0,求a、b的值;
(2)若b=
9
2
,且关于x的方程f(x)=0有两个不同的正实数根,求实数a的取值范围.
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用,导数的综合应用
分析:(1)求出导数,求出切线的斜率和切点,得到a,b的方程,解得即可;
(2)由于f(0)=b=
9
2
>0,关于x的方程f(x)=0有两个不同的正实数根,则有f(x)的极小值为负即可,通过导数的符号即可确定极小值点,解不等式即可得到.
解答: 解:(1)函数f(x)=
1
3
x3+ax2+b的导数f′(x)=x2+2ax,
则在点(-1,f(-1))处的切线斜率为:f′(-1)=1-2a,
由于在点(-1,f(-1))处的切线方程是3x+y+2=0,则1-2a=-3,
解得a=2,
又切点为(-1,1),则-
1
3
+2+b=1,
解得b=-
2
3

(2)函数f(x)=
1
3
x3+ax2+b的导数,
f′(x)=x2+2ax,
由于f(0)=b=
9
2
>0,
关于x的方程f(x)=0有两个不同的正实数根,
则有f(x)的极小值为负即可.
由f′(x)=x2+2ax=x(x+2a),
则0<x<-2a,f′(x)<0,x<0或x>-2a,f′(x)>0,
则有a<0,且f(-2a)<0,
即有a<0,且
1
3
×(-8a3)+4a3+
9
2
<0,
解得,a<-
3
2

故实数a的取值范围是(-∞,-
3
2
).
点评:本题考查导数的运用:求切线方程、求极值,考查判断能力和运算能力,属于中档题和易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数 f(x)=
log0.5,x>0
3x,x≤0
,则f[f(4)]=(  )
A、
1
9
B、
1
4
C、
3
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题正确的是(  )
2cos5°-sin25°
cos25°
=
3

②已知非零向量
a
b
,若
a
b
=0,则
|
a
-2
b
|
|
a
+2
b
|
=2
(1+x+x2)(x-
1
x
)6
的展开式中的常数项为-5.
④已知(
x
+
1
x
)n
展开式中常数项是
C
4
n
,则n=12.
⑤抛掷两枚骰子,当至少有一枚4点或5点出现时,就说这次实验成功,则在30次实验中成功次数X的方差D(X)=
200
27
A、①③④B、②④⑤
C、①④⑤D、①③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

在R上定义运算?:x?y=x(1-y),若不等式(x-a)?(x+a)<1对任意实数x成立,则实数a的取值范围是(  )
A、{a|-1<a<1}
B、{a|0<a<2}
C、{a|-
1
2
<a<
3
2
}
D、{a|-
3
2
<a<
1
2
}

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x),g(x)分别是定义在实数集R上的奇函数、偶函数,且满足f(x)-g(x)=ex(e是自然对数的底数),则有(  )
A、f(2)<f(3)<g(0)
B、g(0)<f(3)<f(2)
C、g(0)<f(2)<f(3)
D、f(2)<g(0)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知b=-a2+3lna,d=c+2,则(a-c)2+(b-d)2的最小值为(  )
A、
2
B、2
C、2
2
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(2,1)是直线l被椭圆
x2
16
+
y2
4
=1所截得的线段的中点,则直线l的方程是(  )
A、x+2y-4=0
B、x-2y=0
C、x+8y-10=0
D、x-8y+6=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b,c满足a>b>c.
(1)求证:
1
a-b
+
1
b-c
+
1
c-a
>0;
(2)现推广如下:把
1
c-a
的分子改为一个大于1的正整数p,使得
1
a-b
+
1
b-c
+
p
c-a
>0对任意a>b>c都成立,试写出一个p并证明之;
(3)现换个角度推广如下:正整数m,n,p满足什么条件时,
m
a-b
+
n
b-c
+
p
c-a
>0对任意a>b>c都成立,请写出条件并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方体ABCD-A1B1C1D1,棱长为1,P为BC中点,Q为线段CC1上的动点,过A、P、Q的平面截该正方体所得的截面记为S,则下列命题正确的是
 
.(写出所有正确命题的编号) 
①当0<CQ<
1
2
时,S为四边形
②当CQ=
1
2
时,S为等腰梯形
③当CQ=
3
4
时,S与C1D1交点R满足C1R1=
1
3

④当
3
4
<CQ<1时,S为六边形
⑤当CQ=1时,S的面积为
6

查看答案和解析>>

同步练习册答案