精英家教网 > 高中数学 > 题目详情
已知椭圆C:+=1(a>b>0)经过A(2,0)和B(1,)两点,O为坐标原点.
(I )求椭圆C的方程;
(II)若以点O为端点的两条射线与椭圆c分别相交于点M,N且,证明:点O到直线MN的距离为定值.
【答案】分析:(I)利用椭圆C:+=1(a>b>0)经过A(2,0)和B(1,)两点,建立方程组,求出几何量,即可求椭圆C的方程;
(II)分类讨论,设出直线方程,代入椭圆方程,利用向量知识及韦达定理,即可求得结论.
解答:(I)解:∵椭圆C:+=1(a>b>0)经过A(2,0)和B(1,)两点,


∴椭圆C的方程为
(II)证明:①当直线MN的斜率不存在时,其方程为x=±,则点O到直线MN的距离为
②当直线MN的斜率存在时,其方程为y=kx+m,设M,N两点的坐标分别为(x1,y1),(x2,y2),
将y=kx+m代入椭圆方程,可得(3+4k2)x2+8kmx+4m2-12=0,则x1+x2=-,x1x2=
令△>0,解得m2<4k2+3,
,∴x1x2+y1y2=0,
∴(1+k2)x1x2+km(x1+x2)+m2=0,
∴(1+k2)•-km•+m2=0,
<4k2+3
∴点O到直线MN的距离为=
由①②可得点O到直线MN的距离为定值
点评:本小题主要考查椭圆的标准方程和几何性质,考查点到直线的距离的计算,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:+y2=1,则与椭圆C关于直线y=x成轴对称的曲线的方程是____________.

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高考数学压轴卷(解析版) 题型:选择题

已知椭圆C:+=1(a>b>0)的左右焦点为F1,F2,过F2线与圆x2+y2=b2相切于点A,并与椭圆C交与不同的两点P,Q,如图,PF1⊥PQ,若A为线段PQ的靠近P的三等分点,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广西桂林市、崇左市、防城港市高考第一次联合模拟理科数学试卷(解析版) 题型:解答题

 如图,已知椭圆C:+=1(a>b>0)的左、右焦点分别为F、F,A是椭圆C上的一点,AF⊥FF,O是坐标原点,OB垂直AF于B,且OF=3OB.

(Ⅰ)求椭圆C的离心率;

(Ⅱ)求t∈(0,b),使得命题“设圆x+y=t上任意点M(x,y)处的切线交椭圆C于Q、Q两点,那么OQ⊥OQ”成立.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省攀枝花市高三12月月考文科数学试卷(解析版) 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,且在x轴上的顶点分别为

(1)求椭圆方程;

(2)若直线轴交于点T,P为上异于T的任一点,直线分别与椭圆交于M、N两点,试问直线MN是否通过椭圆的焦点?并证明你的结论.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三上学期摸底考试文科数学 题型:解答题

(本题满分14分)已知椭圆C:=1(a>b>0)的离心率为,短轴一

 

个端点到右焦点的距离为3.

(1)求椭圆C的方程;

(2)过椭圆C上的动点P引圆O:的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.

 

 

 

查看答案和解析>>

同步练习册答案