精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnax+bx+
a
x
(a、b为常数),在x=-1时取得极值.
(1)求实数b的取值范围;
(2)当a=-1时,关于x的方程f(x)=2x+m有两个不相等的实数根,求实数m的取值范围;
(3)数列{an}满足an=1-
1
an-1+1
(n∈N*且n≥2),a1=
1
2
,数列{an}的前n项和为Sn,求证:2naneSn+an-1(n∈N*,e是自然对数的底).
考点:导数在最大值、最小值问题中的应用,数列与不等式的综合
专题:导数的综合应用
分析:(1)注意到题目中f(x)在x=-1有定义,初步判断a<0;另外,根据f′(-1)=0且-1是其极值点,列出等式,用b表示a代入计算;
(2)结合着定义域,原题可转化成方程ln(-x)-
1
x
=2x+m
在(-∞,0)上有两个不等实根.令-x=t,则问题又进一步转化为方程lnt+
1
t
+2t=m
在(0,+∞)上有两个不等实根,再通过求导的方法对函数g(x)=lnx+
1
x
+2x
进一步研究.
(3)首先由数列的递推关系式求出数列{an}的通项公式,再利用(2)中的结论,即g(x)=lnx+
1
x
+2x≥3-ln2
,其中,令x=
n
n+1
,代入不等式,进行化简计算,累加,即可证明原不等式.
解答: 解:(1)f′(x)=
1
x
+b-
a
x2
=
bx2+x-a
x2

∵f(x)在x=-1有定义∴a<0.
由题意知,x=-1是方程
bx2+x-a
x2
=0
的根,且不是重根.
∴b=a+1且1+4ab≠0,
又∵a<0,∴b<1且b≠
1
2

(2)a=-1时  b=a+1=0即方程ln(-x)-
1
x
=2x+m
在(-∞,0)上有两个不等实根.
即方程lnx+
1
x
+2x=m
在(0,+∞)上有两个不等实根.
g(x)=lnx+
1
x
+2x
(x>0)g′(x)=
1
x
-
1
x2
+2=
2x2+x-1
x2
(x>0)
∴g(x)在(0,
1
2
]
上单调递减,在[
1
2
,+∞)
上单调递增,
当x=
1
2
,g(x)min=g(
1
2
)=3-ln2

又当x→0时,g(x)→+∞;当x→+∞时,g(x)→+∞,
∴当m>3-ln2时,方程f(x)=2x+m有两个不相等的实数根.
(3)an=1-
1
an-1+1
,∴an=
an-1
an-1+1
1
an
=1+
1
an-1

∴{
1
an
}是以2为首项,1为公差的等差数列.
1
an
=n+1

an=
1
n+1

由(2)知g(x)=lnx+
1
x
+2x≥3-ln2

x=
n
n+1
得:ln
n
n+1
+
n+1
n
+
2n
n+1
≥3-ln2
,即ln
n
n+1
+ln2≥
2
n+1
-
1
n

ln
1
2
+ln2≥
2
2
-
1
1
ln
2
3
+ln2≥
2
3
-
1
2

…,
ln
n
n+1
+ln2≥
2
n+1
-
1
n

累加得,ln
1
n+1
+nln2≥
1
2
+
1
3
+…+
1
n+1
+
1
n+1
-1=Sn+an-1

lnan+ln2nSn+an-1
an2neSn+an-1
点评:本题是学生容易做错的类型特别是第一小问中的a<0和1+4ab≠0,往往是他们最容易忽视的范围,第二问依旧是在第一问的基础上,将问题转化成我们更为熟悉的内容;最后一问更是综合性比较强,应该说是数列和不等式的综合应用,难度较大,特别是将(2)中的结论应用于该数列,对x的赋值,比较困难,包括后面的化简,也是需要比较高的观察分析能力和计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

阅读程序框图,如果输出的函数值y在区间[
1
4
,1]
内,则输入的实数x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

y=f(x)是定义在R上的函数,若a∈R,则“x≠a”是“f(x)≠f(a)”成立的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a(x-
1
x
)-lnx,
(1)若f(x)在定义域内为增函数,求a的取值范围;
(2)在(1)的条件下,设函数g(x)=
e
x
,若在[1,e]上至少存在一个x0,使得f(x0)≥g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),称圆心在原点O,半径为
a2+b2
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(
2
,0),其短轴上的一个端点到F的距离为
3

(Ⅰ)求椭圆C的方程和其“准圆”方程;
(Ⅱ)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.
(ⅰ)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程并证明l1⊥l2
(ⅱ)求证:线段MN的长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,多面体ABCDEF中,BA,BC,BE两两垂直,且AB∥EF,CD∥BE,AB=BE=2,BC=CD=EF=1.
(1)若点G在线段AB上,且BG=3GA,求证:CG∥平面ADF;
(2)求直线DE与平面ADF所成的角的正弦值;
(3)求锐二面角B-DF-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点P是三角形ABC所在平面外一点,且PA=BC=1,截面EFGH分别平行于PA,BC(点E,F,G,H分在棱AB,AC,PC,PB上)
(1)求证:四边形EFGH是平行四边形且周长为定值;
(2)设PA与BC所成角为θ,求四边形EFGH的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,设曲线C1
|x|
a
+
|y|
b
=1(a>b>0)所围成的封闭图形的面积为4
2
,曲线C1上的点到原点O的最短距离为
2
2
3
.以曲线C1与坐标轴的交点为顶点的椭圆记为C2
(1)求椭圆C2的标准方程;
(2)设AB是过椭圆C2中心O的任意弦,l是线段AB的垂直平分线.M是l上的点(与O不重合).
①若MO=2OA,当点A在椭圆C2上运动时,求点M的轨迹方程;
②若M是l与椭圆C2的交点,求△AMB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥C-ABD中(如图),△ABD与△CBD是全等的等腰直角三角形,O为斜边BD的中点,AB=4,二面角A-BD-C的大小为60°,并给出下面结论:
①AC⊥BD;
②AD⊥CO;
③△AOC为正三角形;
④cos∠ADC=
3
4

⑤四面体ABCD的外接球面积为32π.
其中真命题是(  )
A、②③④B、①③④
C、①④⑤D、①③⑤

查看答案和解析>>

同步练习册答案