精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=ax2-2x+1+lnx
(Ⅰ)若f(x)无极值点,但其导函数f′(x)有零点,求a的取值;
(Ⅱ)若f(x)有两个极值点,求a的取值范围,并证明f(x)的极小值小于$-\frac{1}{2}$.

分析 (Ⅰ)首先,x>0利用f′(x)有零点而f(x)无极值点,表明该零点左右f′(x)同号,故△=0.由此可得;
(Ⅱ)先由题意,2ax2-2x+1=0有两不同的正根,故△>0,解得0<a<$\frac{1}{2}$,再设2ax2-2x+1=0的两根为x1,x2,根据函数的单调性证出结论即可.

解答 解 (Ⅰ)首先,x>0,f′(x)=2ax-2+$\frac{1}{x}$=$\frac{2{ax}^{2}-2x+1}{x}$,
∵f′(x)有零点而f(x)无极值点,表明该零点左右f′(x)同号,
∴a≠0,且2ax2-2x+1=0的△=0.由此可得a=$\frac{1}{2}$.
(Ⅱ)由题意,2ax2-2x+1=0有两不同的正根,故△>0,a>0,
解得:0<a<$\frac{1}{2}$,
设2ax2-2x+1=0的两根为x1,x2,不妨设x1<x2
则x1=$\frac{1-\sqrt{1-2a}}{2a}$,x2=$\frac{1+\sqrt{1-2a}}{2a}$>1,
∴f(x2)<f(1)=a-2+1<-$\frac{1}{2}$.

点评 本题主要考查了导数的应用,解决本题时要注意题目中所应用的函数的思想,要使的函数无极值点,表明该零点左右f′(x)同号即可,这种思想经常用到.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知Sn等差数列{an}的前n项和,若S4=4,S8=16,则S12=36.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知扇形的周长是4cm,则扇形面积最大是(  )
A.2B.1C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个等差数列{an}的前5项和为48,前10项和为60,则前15项和为(  )
A.36B.72C.83D.108

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=|x+1|+|x+a|,若不等式f(x)≥6的解集为(-∞,-2]∪[4,+∞),则a的值为(  )
A.-7或3B.-7或5C.-3D.3或5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆的中心在原点,离心率$e=\frac{1}{2}$且它的一个焦点与抛物线y2=4x的焦点重合,则此椭圆的方程为(  )
A.$\frac{x^2}{4}+\frac{y^2}{3}=1$B.$\frac{x^2}{8}+\frac{y^2}{6}=1$C.$\frac{x^2}{2}+{y^2}=1$D.$\frac{x^2}{4}+{y^2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=x2-ln(x+a)+b,g(x)=x3
(1)若函数f(x)在点(0,f(0))处的切线方程为x+y=0,求实数a,b的值;
(2)在(1)的条件下,当x∈(0,+∞)时,求证:f(x)<g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,摩天轮的半径为50m,点O距地面的高度为60m,摩天轮做匀速转动,每3min转一圈,摩天轮上点P的起始位置在最低点处.
(1)试确定在时刻t(min)时点P距离地面的高度;
(2)在摩天轮转动的一圈内,有多长时间点P距离地面超过85m?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.7个人站成一排,若甲,乙,丙三人互不相邻的排法共有1440种.

查看答案和解析>>

同步练习册答案