精英家教网 > 高中数学 > 题目详情
8.已知Sn等差数列{an}的前n项和,若S4=4,S8=16,则S12=36.

分析 由等差数列的前n项和性质可得:S4,S8-S4,S12-S8,成等差数列,即可得出.

解答 解:由等差数列的前n项和性质可得:S4,S8-S4,S12-S8,成等差数列,
∴2×(16-4)=4+S12-16,
S12=36.
故答案为:36.

点评 本题考查了等差数列的前n项和性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xoy中,曲线C1的参数方程为$\left\{{\begin{array}{l}{x=2-\sqrt{2}t}\\{y=-1+\sqrt{2}t}\end{array}}\right.$(t为参数),以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为$ρ=2cos(θ+\frac{π}{4})$
(1)判断曲线C1与曲线C2的位置关系;
(2)设点M(x,y)为曲线C2上任意一点,求2x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$cos(θ-\frac{π}{2})=\frac{4}{5}$,且sinθ-cosθ>1,则sin(2θ-2π)=(  )
A.$-\frac{24}{25}$B.$-\frac{12}{25}$C.$-\frac{4}{5}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$sin(π-α)=\sqrt{2}cos(\frac{3π}{2}+β)$和$\sqrt{3}cos(-α)=-\sqrt{2}cos(π-β)$,0<α<π,0<β<π,求α,β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设△ABC的内角A,B,C所对的边分别为a,b,c,已知a=x,b=2,B=60°,如果解此三角形有且只有两个解,则x的取值范围是$({2,\frac{{4\sqrt{3}}}{3}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行抽样调查,调查结果如表所示
喜欢甜品不喜欢甜品总计
南方学生503080
北方学生101020
总计6040100
(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”
(2)已知在被调查的北方学生中有4人是数学系的学生,其中2人喜欢甜品,现在从这4名学生中随机抽取2人,求恰有1人喜欢甜品的概率?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
下面的临界表供参考:
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.对某校高二年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如图:
分组频数频率
[10,15)mp
[15,20)24n
[20,25)40.1
[25,30)20.05
合计M1
(1)若已知M=40,求出表中m、n、p中及图中a的值;
(2)若该校高二学生有240人,试估计该校高二学生参加社区服务的次数在区间[10,15)内的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设等差数列{an}的前n项和为Sn,若-a2015<a1<-a2016,则必定有(  )
A.a2016<0,且a2017>0B.a2016>0,且a2017<0
C.S2015<0,且S2016>0D.S2015>0,且S2016<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ax2-2x+1+lnx
(Ⅰ)若f(x)无极值点,但其导函数f′(x)有零点,求a的取值;
(Ⅱ)若f(x)有两个极值点,求a的取值范围,并证明f(x)的极小值小于$-\frac{1}{2}$.

查看答案和解析>>

同步练习册答案