【题目】若函数
的极大值为6,极小值为2,则
的单调递减区间是( )
A.
B. ![]()
C.
D. ![]()
【答案】A
【解析】
根据函数f(x)=x3﹣3ax+b(a>0)的极大值为6,极小值为2,求导f′(x)=0,求得该函数的极值点x1,x2,并判断是极大值点x1,还是极小值点x2,代入f(x1)=6,f(x2)=2,解方程组可求得a,b的值,再由f′(x)<0即可得到.
令f′(x)=3x2﹣3a=0,得x=±
,
令f′(x)>0得x>
或x<﹣
;令f′(x)<0得﹣
<x<
.
即x=﹣
取极大,x=
取极小.
∵函数f(x)=x3﹣3ax+b(a>0)的极大值为6,极小值为2,
∴f(
)=2,f(﹣
)=6,
即a
﹣3a
+b=2且﹣a
+3a
+b=6,
得a=1,b=4,
则f′(x)=3x2﹣3,由f′(x)<0得﹣1<x<1.
则减区间为(﹣1,1).
故选:A.
科目:高中数学 来源: 题型:
【题目】某商场销售某种商品的经验表明,该商品每日的销售量
(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
为常数.已知销售价格为5元/千克时,每日可售出该商品13千克.
(1)求
的值;
(2)若该商品的成本为3元/千克,试确定销售价格
的值,使商场每日销售该商品所获得的利润最大,并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个焦点分别为
和
,过点
的直线与椭圆相交与
两点,且
.
(1)求椭圆的离心率;
(2)求直线
的斜率;
(3)设点
与点
关于坐标原点对称,直线
上有一点
在
的外接圆上,且
,求椭圆方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛掷一颗质地均匀的骰子,有如下随机事件:
=“点数为i”,其中
;
=“点数不大于2”,
=“点数大于2”,
=“点数大于4”;E=“点数为奇数”,F=“点数为偶数”.判断下列结论是否正确.
(1)
与
互斥;(2)
,
为对立事件;(3)
;(4)
;(5)
,
;
(6)
;(7)
;(8)E,F为对立事件;(9)
;(10)![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,随着汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017 年成交的二手车的交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.在图1对使用时间的分组中,将使用时间落入各组的频率视为概率.
![]()
![]()
(1)记“在2017年成交的二手车中随机选取一辆,该车的使用年限在
”,为事件
,试估计
的概率;
(2)根据该汽车交易市场的历史资料,得到散点图如图,其中
(单位:年)表示二手车的使用时间,
(单位:万元)表示相应的二手车的平均交易价格.
由散点图判断,可采用
作为二手车平均交易价格
关于其使用年限
的回归方程,相关数据如下表(表中
):
![]()
①根据回归方程类型及表中数据,建立
关于
的回归方程;
②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格
的佣金,对使用时间8年以上(不含 8年)的二手车收取成交价格
的佣金. 在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.
附注:①对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
,
;
②参考数据:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”,则该课程考核“合格”,若甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7,在实验考核中合格的概率分别为0.8,0.7,0.9,所有考核是否合格相互之间没有影响.
(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;
(2)求这三个人该课程考核都合格的概率(结果保留三位小数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的参数方程为
(θ为参数),直线l的极坐标方程为ρcos
=2
.
(1)写出曲线C的普通方程和直线l的直角坐标方程;
(2)求曲线C上的点到直线l的最大距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com