精英家教网 > 高中数学 > 题目详情
16.已知∠xOy=90°,A在Ox上,B在Oy上,且OA=OB,点P是△AOB内的动点,射线OP交线段AB于点C,则AC≥AO的概率为(  )
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$1-\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

分析 由题意,AB=$\sqrt{2}$AO,AC=AO时,BC=($\sqrt{2}$-1)AO,以长度为测度,即可求出AC≥AO的概率.

解答 解:由题意,AB=$\sqrt{2}$AO,AC=AO时,BC=($\sqrt{2}$-1)AO,
∴AC≥AO的概率为$\frac{BC}{AB}$=1-$\frac{\sqrt{2}}{2}$.
故选:C.

点评 本题考查求AC≥AO的概率,确定以长度为测度是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知点P,Q为圆C:x2+y2=25上的任意两点,且|PQ|<6,若PQ中点组成的区域为M,在圆C内任取一点,则该点落在区域M(2,-1)上的概率为(  )
A.$\frac{3}{5}$B.$\frac{9}{25}$C.$\frac{16}{25}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知椭圆5x2+ky2=5的一个焦点是(0,2),则椭圆的离心率等于$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=x3-2x2+x+1,求:
(1)求在点(2,3)处的切线方程;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{4|lo{g}_{2}x|,0<x<2}\\{\frac{1}{2}{x}^{2}-5x+12,x≥2}\end{array}\right.$,若存在实数a、b、c、d,满足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0,则abcd的取值范围是(  )
A.(16,21)B.(16,24)C.(17,21)D.(18,24)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设$\overrightarrow{a}$=(-1,1),$\overrightarrow{b}$=(4,3),$\overrightarrow{c}$=(5,-2)
(1)若$(\overrightarrow a+t\overrightarrow b)⊥\overrightarrow c$,求实数t的值;
(2)试用$\overrightarrow a,\overrightarrow b$表示$\overrightarrow c$;
(3)若$\overrightarrow a=\overrightarrow{OA},\overrightarrow b=\overrightarrow{OB}$,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设${({5\sqrt{x}-\root{3}{x}})^n}$展开式的各项系数的和为M,二项式系数的和为N,M-N=992,则展开式中x2项的系数为(  )
A.250B.-250C.150D.-150

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.向量$\overrightarrow a=(-2,1)$,$\overrightarrow b=(λ,1)$,若$\vec a$与$\vec b$的夹角为钝角,则λ的范围(  )
A.$(\frac{1}{2},2)∪(2,+∞)$B.(2,+∞)C.$(-∞,-\frac{1}{2})$D.$(\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某休闲农庄有一块长方形鱼塘ABCD,AB=100米,BC=50$\sqrt{3}$米,为了便于游客休闲散步,该农庄决定在鱼塘内建3条如图所示的观光走廊OE、EF和OF,考虑到整体规划,要求O是AB的中点,点E在边BC上,点F在边AD上(不含顶点),且∠EOF=90°.($\sqrt{2}$≈1.4,$\sqrt{3}$≈1.7)
(1)设∠BOE=α,试将△OEF的周长l表示成α的函数关系式,并求出此函数的定义域;
(2)经核算,三条走廊每米建设费用均为4000元,试问如何设计才能使建设总费用最低并求出最低总费用.

查看答案和解析>>

同步练习册答案