【题目】设锐角三角形
的内角
的对边分别为
,
.
(Ⅰ)求
的大小;
(Ⅱ)求
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
是实数。设
,
为该函数图象上的两点,且
.
(1)若函数
的图象在点
处的切线互相垂直,且
,求
的最小值;
(2)若函数
的图象在点
处的切线重合,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第
年与年销量
(单位:万件)之间的关系如下表:
![]()
(1)在图中画出表中数据的散点图;
![]()
(2)根据散点图选择合适的回归模型拟合
与
的关系(不必说明理由);
(3)建立
关于
的回归方程,预测第5年的销售量.
附注:参考公式:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
的焦点为
,过
的直线
交抛物线
于点
,当直线
的倾斜角是
时,
的中垂线交
轴于点
.
![]()
(1)求
的值;
(2)以
为直径的圆交
轴于点
,记劣弧
的长度为
,当直线
绕
点旋转时,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还
升,
升,
升,1斗为10升,则下列判断正确的是( )
A.
,
,
依次成公比为2的等比数列,且![]()
B.
,
,
依次成公比为2的等比数列,且![]()
C.
,
,
依次成公比为
的等比数列,且![]()
D.
,
,
依次成公比为
的等比数列,且![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,圆
和
的参数方程分别是
(
为参数)和
(
为参数),以
为极点,
轴的正半轴为极轴建立极坐标系.
(Ⅰ)求圆
和
的极坐标方程;
(Ⅱ)射线
:
与圆
交于点
、
,与圆
交于点
、
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
在
处的切线方程为![]()
(1)若
=
,求证:曲线
上的任意一点处的切线与直线
和直线
围成的三角形面积为定值;
(2)若
,是否存在实数
,使得
对于定义域内的任意
都成立;
(3)在(2)的条件下,若方程
有三个解,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com