精英家教网 > 高中数学 > 题目详情
1.已知sinα=$\frac{2}{3}$,α∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{5}$,β∈(π,$\frac{3π}{2}$),那么cos(α+β)=$\frac{5\sqrt{3}+8}{15}$.

分析 由同角三角函数的基本关系可得cosα和sinβ,代入两角和的余弦公式计算可得.

解答 解:∵sinα=$\frac{2}{3}$,α∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{5}$,β∈(π,$\frac{3π}{2}$),
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{\sqrt{5}}{3}$,sinβ=-$\sqrt{1-co{s}^{2}β}$=-$\frac{4}{5}$
∴cos(α+β)=cosαcosβ-sinαsinβ
=$-\frac{\sqrt{5}}{3}×(-\frac{3}{5})-\frac{2}{3}×(-\frac{4}{5})$=$\frac{5\sqrt{3}+8}{15}$
故答案为:$\frac{5\sqrt{3}+8}{15}$

点评 本题考查两角和与差的三角函数公式,涉及同角三角函数的基本关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知f(x)是定义在R上的偶函数,并满足f(x+2)=-$\frac{1}{f(x)}$,当2≤x≤3时,f(x)=x,则f(5.5)=2.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体8个顶点的距离均大于1,称其为“安全飞行”,用蜜蜂“安全飞行”的概率为(  )
A.1-$\frac{2π}{81}$B.$\frac{2π}{81}$C.1-$\frac{4π}{81}$D.$\frac{4π}{81}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知关于x的方程x2+2(m-2)x+m2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若已知函数f(x)=$\sqrt{2-\frac{x+3}{x+1}}$定义域为A,φ(x)=$\frac{1}{\sqrt{(x-a-1)(2a-x)}}$(a<1)的定义域为B,当B⊆A时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若2sinα=-3cosα,则角2α的终边所在的象限是第第三象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合M={x|x=$\frac{1}{2}$[1+(-1)n],n∈Z},N={x∈R|x3=x},试判断集合M,N之间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知实数x,y满足$\left\{\begin{array}{l}{2x+y-2≥0}\\{x-2y+4≥0}\\{3x-y-3≤0}\end{array}\right.$ 
(1)求s=x2+y2的最大值和最小值;
(2)求t=$\frac{y+1}{x+1}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设α$∈(0,\frac{π}{4})$,a=sinα,b=sin(sinα),c=tan(tanα)的大小关系是(  )
A.α<b<cB.b<α<cC.c<b<αD.不能确定

查看答案和解析>>

同步练习册答案