精英家教网 > 高中数学 > 题目详情
9.已知关于x的方程x2+2(m-2)x+m2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m的值.

分析 本题实际考察二次函数的两根的关系,可利用韦达定理转化为含参数m的方程来解决问题.

解答 设x的方程x2+2(m-2)x+m2+4=0有两个实数根为x1,x2
∴x1+x2=2(2-m),x1x2=m2+4,
∵这两根的平方和比两根的积大21,
∴x12+x22-x1x2=21,
即:(x1+x22-3x1x2=21,
∴4(m-2)2-3(m2+4)=21,
解得:m=17或m=-1,
∵△=4(m-2)2-4(m2+4)≥0,
解得:m≤0.故m=17舍去,
∴m=-1.

点评 在解决关于二次函数这类问题时,一定要注意对于判别式的讨论,以免造成不必要的失误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=sin2x-sin(2x-$\frac{π}{6}$).
(1)求函数f(x)的最小正周期和最大值;
(2)△ABC的内角A、B、C的对边分别为a、b、c,c=3,f($\frac{C}{2}$)=-$\frac{1}{4}$,若向量$\overrightarrow{m}$=(1,sinA)与$\overrightarrow{n}$=(2,sinB)共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:
$\frac{\sqrt{2}cos55°-sin20°}{\sqrt{2}cos5°+sin20°}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.不等式$\frac{{x}^{2}-x-6}{-{x}^{2}-1}$>0的解集是(  )
A.(-2,+∞)B.(3,+∞)C.(-2,-3)D.(-∞,-2)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=ex-mx-n(m,n∈R).
(1)当m=1,n=0时,求f(x)的值;
(2)函数f(x)≥0在R上恒成立,求当mn取得最大值时,f(x)在[0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\frac{\sqrt{x+4}}{x+2}$.
(1)求函数f(x)的定义域;
(2)求f(-1),f($\frac{1}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知sinα=$\frac{2}{3}$,α∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{5}$,β∈(π,$\frac{3π}{2}$),那么cos(α+β)=$\frac{5\sqrt{3}+8}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x+$\frac{1}{x}$,当a>1时,试比较f(a2+a)与f(3a-2)大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.讨论函数f(x)=x+$\frac{1}{x}$在定义域上的单调性.

查看答案和解析>>

同步练习册答案