精英家教网 > 高中数学 > 题目详情

已知函数),
(Ⅰ)若,曲线在点处的切线与轴垂直,求的值;
(Ⅱ)在(Ⅰ)的条件下,求证:
(Ⅲ)若,试探究函数的图象在其公共点处是否存在公切线,若存在,研究值的个数;若不存在,请说明理由.

(Ⅰ)(Ⅱ)见解析(Ⅲ)当时,函数的图象在其公共点处不存在公切线;当时,函数的图象在其公共点处存在公切线,且符合题意的值有且仅有两个

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数的单调递增区间为
(Ⅰ)求证:
(Ⅱ)当取最小值时,点是函数图象上的两点,若存在使得,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题分12分)                        
定义.
(Ⅰ)求曲线与直线垂直的切线方程;
(Ⅱ)若存在实数使曲线点处的切线斜率为,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
已知函数
(1)判断函数上的单调性;
(2)是否存在实数,使曲线在点处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为奇函数,
(1)求实数a的值。
(2)若上恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)设.如果对任意,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的极值
(2)当时,求的单调区间
(3)若对任意的,恒有成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
 (Ⅰ)若时,函数在其定义域上是增函数,求b的取值范围;
 (Ⅱ)在(Ⅰ)的结论下,设函数的最小值;
 (Ⅲ)设函数的图象C1与函数的图象C2交于PQ,过线段PQ的中点Rx轴的垂线分别交C1C2于点MN,问是否存在点R,使C1在M处的切线与C2N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)判断函数的奇偶性并证明;
(II)若,证明:函数在区间上是增函数.

查看答案和解析>>

同步练习册答案