精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-4x+a+3,a∈R.
(Ⅰ)若函数f(x)在(-∞,+∞)上至少有一个零点,求a的取值范围;
(Ⅱ)若函数f(x)在[a,a+2]上的最大值为3,求a的值.
分析:(Ⅰ)由函数y=f(x)在R上至少有一个零点?方程f(x)=x2-4x+a+3=0至少有一个实数根?△≥0,解出即可;
(II)通过对区间[a,a+2]端点与对称轴顶点的横坐标2的大小比较,再利用二次函数的单调性即可得出.
解答:解:(Ⅰ)由函数y=f(x)在R上至少有一个零点,
即方程f(x)=x2-4x+a+3=0至少有一个实数根.
∴△=16-4(a+3)≥0,
解得a≤1.
(Ⅱ)函数f(x)=x2-4x+a+3图象的对称轴方程是x=2.
①当a+1≤2,即a≤1时,ymax=f(a)=a2-3a+3=3
解得a=0或3.
又a≤1,
∴a=0.
②当a+1>2,即a>1时,ymax=f(a+2)=a2+a-1=3
解得a=
-1±
17
2

又a>1,∴a=
-1+
17
2

综上可知:a=0或
-1+
17
2
点评:本题考查了二次函数零点与一元二次方程的实数根的关系、一元二次方程的实数根与判别式△的关系、二次函数的单调性、分类讨论等基础知识与基本技能方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案