精英家教网 > 高中数学 > 题目详情
16.如图,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点在抛物线y2=4$\sqrt{2}$x的准线上,离心率为$\frac{\sqrt{6}}{3}$,若不过椭圆E上顶点A的动直线l与椭圆E交于P、Q两点,且$\overrightarrow{AP}$•$\overrightarrow{AQ}$=0.
(1)求椭圆E的方程;
(2)证明:直线l过定点,并求出定点坐标.

分析 (1)由抛物线y2=4$\sqrt{2}$x,可得准线x=-$\sqrt{2}$.可得:椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点$(-\sqrt{2},0)$,c=$\sqrt{2}$.又$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$,a2=b2+c2.联立解出即可得出.
(2)设直线l的方程为:y=kx+m.$(m≠\sqrt{2})$,P(x1,y1),Q(x2,y2),A(0,$\sqrt{2}$).与椭圆方程联立化为(2+3k2)x2+6kmx+3m2-6=0,△>0,利用$\overrightarrow{AP}$•$\overrightarrow{AQ}$=0.(1+k2)x1x2+$k(m-\sqrt{2})$(x1+x2)+$(m-\sqrt{2})^{2}$=0,再把根与系数的关系代入即可得出.

解答 解:(1)由抛物线y2=4$\sqrt{2}$x,可得准线x=-$\sqrt{2}$.
可得:椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点$(-\sqrt{2},0)$,∴c=$\sqrt{2}$.
又椭圆的离心率为$\frac{\sqrt{6}}{3}$,∴$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$,及a2=b2+c2
联立解得a=$\sqrt{3}$,b=1.
∴椭圆E的方程为$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}$=1.
(2)设直线l的方程为:y=kx+m.$(m≠\sqrt{2})$,P(x1,y1),Q(x2,y2),A(0,$\sqrt{2}$).
联立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,化为(2+3k2)x2+6kmx+3m2-6=0,
△>0,
∴x1+x2=$\frac{-6km}{2+3{k}^{2}}$,x1x2=$\frac{3{m}^{2}-6}{2+3{k}^{2}}$.
∵$\overrightarrow{AP}$•$\overrightarrow{AQ}$=0.
∴x1x2+$({y}_{1}-\sqrt{2})({y}_{2}-\sqrt{2})$=0,
即x1x2+$(k{x}_{1}+m-\sqrt{2})$$(k{x}_{2}+m-\sqrt{2})$=0,
化为:(1+k2)x1x2+$k(m-\sqrt{2})$(x1+x2)+$(m-\sqrt{2})^{2}$=0,
∴$\frac{(1+{k}^{2})(3{m}^{2}-6)}{2+3{k}^{2}}$+$\frac{-6{k}^{2}m(m-\sqrt{2})}{2+3{k}^{2}}$+$(m-\sqrt{2})^{2}$=0,
化为:5m+$\sqrt{2}$=0,解得m=-$\frac{\sqrt{2}}{5}$.
∴直线l经过定点$(0,-\frac{\sqrt{2}}{5})$.

点评 本题考查了抛物线与椭圆的标准方程及其性质、直线与椭圆相交问题、一元二次方程的根与系数的关系、向量的数量积运算性质,考查了数形结合方法、推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知三棱锥P-ABC的4个顶点都在球O的球面上,若|AC|=4,∠ABC=30°,PA⊥平面ABC,PA=6,则球O的表面积为100π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个圆锥形漏斗的母线长为20,高为h,则体积V的表达式为(  )
A.$\frac{1}{3}$π(400-h2)hB.π(400-h2)hC.$\frac{1}{3}$πh$\sqrt{400-{h}^{2}}$D.πh$\sqrt{400-{h}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{a}{3}$x3-$\frac{1}{2}$btx2+c(t2-1)x+t(t≠0).
(1)当a=c=1,b=2时,若f(x)在区间(-1,1)上不单调,求t的取值范围;
(2)若g(x)=f′(x)+b(t+1)x-c(t2-2),且当|x|≤1时|g(x)|≤1,求证:当|x|≤k<1时,|g(x)|≤1+k-k2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}(n=1,2,3,…),⊙C1:x2+y2-2anx+2an+1y-2=0和⊙C2:x2+y2+2x+2y-2=0.若⊙C1和⊙C2交于A、B两点,且这两点平分⊙C2的周长
(1)求证数列{an}是等差数列;
(2)若a1=1,则当⊙C1面积最小时,求出⊙C1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若a∈R,则“1<a<2”是“a2-3a≤0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设实数$α∈\left\{{-2,-1,\frac{1}{2},1,3}\right\}$,如果函数y=xα是定义域为R的奇函数,则α的值的集合为{1,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某班同学利用国庆节进行社会实践,对[20,50]岁的临汾市“低头族”(低头族电子产品而忽视人际交往的人群)人群随是因使用机抽取1000人进行了一次调查,得到如下频数分布表:
年龄段分组[20,25)[25,30)[30,35)[35,40)[40,45)[45,50]
频数3003201601604020
(1)在答题卡上作出这些数据的频率分布直方图;
(2)估计[20,50]年龄段的“低头族”的平均年龄(同一组中的数据用该组区间的中点值作代表);
(3)从年龄段在[25,35)的“低头族”中采用分层抽样法抽取6人接受采访,并从6人中随机选取2人作为嘉宾代表,求选取的2名嘉宾代表中恰有1人年龄在[25,30)岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图是一个几何体的三视图,则该几何体的体积等于(  )
A.$\frac{1}{2}$B.$\frac{5}{6}$C.1D.$\frac{5}{3}$

查看答案和解析>>

同步练习册答案