【题目】某小区为了了解业主用水情况,该小区分为一期和二期,入住共达4000户,现在通过随机抽样获得了100户居民的月均用水量,下图是调查结果的频数分布表和频率分布直方图.
分组 |
|
|
|
|
|
频数 | 4 | 8 | 15 | 22 | 25 |
分组 |
|
|
|
| |
频数 | 14 | 6 | 4 | 2 |
![]()
(1)估计该小区月均用水量超过3.8吨约有多少户;
(2)通过频率分布直方图,估计该小区居民月均用水量平均值和中位数?科目:高中数学 来源: 题型:
【题目】流行性感冒(简称流感)是流感病毒引起的急性呼吸道感染,是一种传染性强、传播速度快的疾病.其主要通过空气中的飞沫、人与人之间的接触或与被污染物品的接触传播.流感每年在世界各地均有传播,在我国北方通常呈冬春季流行,南方有冬春季和夏季两个流行高峰.儿童相对免疫力低,在幼儿园、学校等人员密集的地方更容易被传染.某幼儿园将去年春期该园患流感小朋友按照年龄与人数统计,得到如下数据:
年龄( |
|
|
|
|
|
患病人数( |
|
|
|
|
|
(1)求
关于
的线性回归方程;
(2)计算变量
、
的相关系数
(计算结果精确到
),并回答是否可以认为该幼儿园去年春期患流感人数与年龄负相关很强?(若
,则
、
相关性很强;若
,则
、
相关性一般;若
,则
、
相关性较弱.)
参考数据:
.
参考公式:
,
相关系数
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(其中
为参数,
).在极坐标系(以坐标原点
为极点,以
轴非负半轴为极轴)中,曲线
的极坐标方程为
.
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)若曲线
上恰有一个点到曲线
的距离为1,求曲线
的直角坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设中心在原点,焦点在
轴上的椭圆
过点
,且离心率为
.
为
的右焦点,
为
上一点,
轴,
的半径为
.
(1)求
和
的方程;
(2)若直线
与
交于
两点,与
交于
两点,其中
在第一象限,是否存在
使
?若存在,求
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,以
轴为始边做两个锐角
,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为![]()
![]()
(1)求
的值; (2)求
的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
(其中
,
,
)的图象的两条相邻对称轴之间的距离为
,且图象上一个最低点为
.
(1)求函数
的解析式;
(2)当
时,求函数
的值域;
(3)若方程
在
上有两个不相等的实数根
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,直线
与
轴交于点
,与曲线
交于两点
,
.
(1)求曲线
的直角坐标方程;
(2)求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com