精英家教网 > 高中数学 > 题目详情
已知f(x)=log
1
2
x+3
的反函数为f-1(x),则使f-1(x)<x-2成立的x的取值范围是______.
y=log
1
2
x+3
,(x>0),解得x=(
1
2
)y-3
,将x与y互换得到y=23-x
∴f(x)=log
1
2
x+3
的反函数为f-1(x)=23-x(x∈R).
由f-1(x)<x-2,即23-x<x-2.
令g(x)=23-x-x+2,
由指数函数及复合函数的单调性判断方法可知:y=23-x在R上单调递减,
由一次函数的单调性可知:y=-x+2在R上单调递减,
∴g(x)=23-x-x+2在R上单调递减,
而g(3)=20-3+2=0,
∴当x>3时,g(x)<g(3)=0,即23-x<x-2.
因此使f-1(x)<x-2成立的x的取值范围是(3,+∞).
故答案为(3,+∞).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
log
(4x+1)
4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为R上的奇函数,当x>0时,f(x)=3x,那么f(log
 
4
1
2
)的值为
-9
-9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R上的奇函数,且当x>0时有f(x)=log 
110
x

(1)求f(x)的解析式;  
(2)解不等式f(x)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x>0时,f(x)=log 
1
4
x,那么f(-
1
2
)的值是(  )
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=
log(4x+1)4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

同步练习册答案