精英家教网 > 高中数学 > 题目详情
若函数f(x)=x3-2x2+cx+c在x=2处有极值,则函数f(x)的图象x=1处的切线的斜率为( )
A.1
B.-3
C.-5
D.-12
【答案】分析:对函数f(x)=x3-2x2+cx+c进行求导,根据函数在x=2处有极值,可得f′(2)=0,求出c值,然后很据函数导数和函数切线的斜率的关系即可求解.
解答:解:∵函数f(x)=x3-2x2+cx+c在x=2处有极值,
∴f′(x)=3x2-4x+c,
∵f′(2)=0,∴12-8+c=0,
∴c=-4,
∴f′(x)=3x2-4x-4,
∴函数f(x)的图象x=1处的切线的斜率为f′(1)=-5,
故选C.
点评:本题主要考查函数在某点取得极值的条件,以及函数的导数的求法,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=x3+
1
x
,则
 
lim
△x→0
f(△x-1)+f(1)
2△x
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3+3x-1,x∈[-1,l],则下列判断正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3+3mx2+nx+m2为奇函数,则实数m的值为
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3-3bx+b在区间(0,1)内有极小值,则b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3-3x+1在闭区间[-3,0]上的最大值,最小值分别为M,m,则M+m=
-14
-14

查看答案和解析>>

同步练习册答案