精英家教网 > 高中数学 > 题目详情
2.设集合S={x|(x-1)(x-4)≤0},T={m≤x≤m+2},若T⊆S,则实数m的取值范围是[1,2].

分析 讨论集合T为空集和非空集合时,利用T⊆S,确定m的取值范围即可.

解答 解:S={x|1≤x≤4}.
若T=∅,则m>m+2,此时不等式无解.
若T≠∅,T⊆S时,则$\left\{\begin{array}{l}{m+2≤4}\\{m≥1}\end{array}\right.$,
解得:1≤m≤2,
所以实数m的取值范围是[1,2].
故答案是:[1,2].

点评 本题主要考查集合关系的应用,注意要对集合T进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知△ABC,角A,B,C所对的边分别为a,b,c,则以下为钝角三角形的是(  )
A.a=3,b=3,c=4B.a=4,b=5,c=6C.a=4,b=6,c=7D.a=3,b=3,c=5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若复数z满足(1+2i)z=5(i为虚数单位),则复数z的虚部是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$=(1,k),$\overrightarrow{b}$=(9,k-6),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数k的值为(  )
A.-$\frac{3}{4}$B.$\frac{3}{5}$C.3D.3+3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,点A是单位圆与x轴正半轴的交点,点B是单位圆上一个定点,点P是一个动点,且∠AOB=120°,∠AOP=θ(0<θ<π),$\overrightarrow{OQ}$=$\overrightarrow{OA}$+$\overrightarrow{OP}$.
(Ⅰ)若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中x,y∈R,求x+y的最大值;
(Ⅱ)当$\overrightarrow{OA}$•$\overrightarrow{OQ}$+sinθ≥$\frac{\sqrt{6}}{2}$+1时,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)求值:${(\frac{1}{81})}^{-\frac{1}{4}}$+${(\sqrt{2}-1)}^{0}$+log89×log316;
(2)已知a+a-1=6,求a2+a-2和${a}^{\frac{1}{2}}$+${a}^{-\frac{1}{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题“所有实数的平方根都是正数”的否定为(  )
A.所有实数的平方都不是正数B.有的实数的平方是正数
C.至少有一个实数的平方不是正数D.至少有一个实数的平方是正数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在正三棱柱(底面是正三角形的直棱柱)ABC-A1B1C1中,D为AC的中点,
(Ⅰ)证明:AB1∥平面BDC1
(Ⅱ)当AB=$\sqrt{2}$AA1时,求证:AB1⊥BC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0),最大值为2,函数与直线y=1的交点中,距离最近两点间的距离为$\frac{π}{3}$,若f(x)≤|f($\frac{π}{6}$)|对x∈R恒成立,且$f(\frac{π}{2})>f(π)$,求f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案