精英家教网 > 高中数学 > 题目详情
如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCD,F为线段A′C的中点.
(Ⅰ)求证:BF∥平面A′DE;
(Ⅱ)设M为线段DE的中点,求直线FM与平面A′DE所成角的余弦值.
(Ⅰ)证明:取A'D的中点G,连结GF,GE,
由条件易知
所以FC∥BE,FG=BE,
故四边形BEGF为平行四边形,
所以BF∥EG,
因为EG平面A′DE,BF平面A′DE,
所以BF∥平面A′DE。
(Ⅱ)在平行四边形ABCD中,设BC=a,
则AB=CD=2a,AD=AE=EB=a,连结CE,
因为∠ABC=120°,
在△BCE中,可得CE=a,
在△ADE中,可得DE=a,
在△CDE中,因为CD2=CE2+DE2,所以CE⊥DE,
在正三角形A′DE中,M为DE中点,所以A′M⊥DE,
由平面A′DE⊥平面BCD,可知A′M⊥平面BCD,A′M⊥CE,
取A′E的中点N,连结NM,NF,
所以NF⊥DE,NF⊥A′M,
因为DE交A′M于M,所以NF⊥平面A′DE,
则∠FMN为直线FM与平面A′DE所成角,
在Rt△FMN中,

所以直线FM与平面A′DE所成角的余弦值为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,下列结论中错误的是(  )
A、
AB
=
DC
B、
AD
+
AB
=
AC
C、
AB
-
AD
=
BD
D、
AD
+
CB
=
0

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD,
AD
=a
AB
=b
,M为AB的中点,点N在DB上,且
DN
=t
NB

(1)当t=2时,证明:M、N、C三点共线;
(2)若M、N、C三点共线,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形ABCD中,
AB
=
a
AD
=
b
AN
=3
NC
,则
BN
=
-
1
4
a
+
3
4
b
-
1
4
a
+
3
4
b
(用
a
b
表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形ABCD中,若
OA
=
a
OB
=
b
则下列各表述是正确的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形OABC中,点O是原点,点A和点C的坐标分别是(3,0)、(1,3),点D是线段AB上的中点.
(1)求AB所在直线的一般式方程;
(2)求直线CD与直线AB所成夹角的余弦值.

查看答案和解析>>

同步练习册答案