精英家教网 > 高中数学 > 题目详情
11.如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,平面AD1C把正方体分成两部分.求:
(1)直线C1B与平面AD1C所成的角;
(2)平面C1D1DC与平面AD1C所成二面角的平面角的余弦值;
(3)两部分中体积大的部分的体积.

分析 (1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出直线C1B与平面AD1C所成的角.
(2)求出平面AD1C的法向量和平面C1D1DC的法向量,利用向量法能求出平面C1D1DC与平面AD1C所成二面角的平面角的余弦值.
(3)求出${V}_{{D}_{1}-ADC}$和正方体ABCD-A1B1C1D1的体积,由此能求出两部分中体积大的部分的体积.

解答 解:(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
则C1(0,a,a),B(a,a,0),A(a,0,0),D1(0,0,a),C(0,a,0),
$\overrightarrow{{C}_{1}B}$=(a,0,-a),$\overrightarrow{AC}$=(-a,a,0),$\overrightarrow{A{D}_{1}}$=(-a,0,a),
设平面AD1C的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AC}=-ax+ay=0}\\{\overrightarrow{n}•\overrightarrow{A{D}_{1}}=-ax+az=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,1,1),
设直线C1B与平面AD1C所成的角为θ,
则sinθ=$\frac{|\overrightarrow{{C}_{1}B}•\overrightarrow{n}|}{|\overrightarrow{{C}_{1}B}|•|\overrightarrow{n}|}$=0,
∴直线C1B与平面AD1C所成的角为0°.
(2)平面AD1C的法向量$\overrightarrow{n}$=(1,1,1),
平面C1D1DC的法向量$\overrightarrow{m}$=(1,0,0),
设平面C1D1DC与平面AD1C所成二面角的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
∴平面C1D1DC与平面AD1C所成二面角的平面角的余弦值为$\frac{\sqrt{3}}{3}$.
(3)∵S△ADC=$\frac{1}{2}{a}^{2}$,∴${V}_{{D}_{1}-ADC}$=$\frac{1}{3}×\frac{1}{2}{a}^{2}×a$=$\frac{{a}^{3}}{6}$,
∵正方体ABCD-A1B1C1D1的体积V=a3
∴两部分中体积大的部分的体积V=V-${V}_{{D}_{1}-ADC}$=${a}^{3}-\frac{{a}^{3}}{6}$=$\frac{5{a}^{3}}{6}$.

点评 本题考查线面角的求法,考查二面角的求法,考查几何体的体积的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.某导演先从2个金鸡奖和3个百花奖的5位演员名单中挑选2名演主角,后又从剩下的演员中挑选1名演配角.这位导演挑选出2个金鸡奖演员和1个百花奖演员的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{10}$C.$\frac{2}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=blnx.
(1)当b=1时,求G(x)=x2-x-f(x)在区间[${\frac{1}{2}$,e]上的最值;
(2)若存在一点x0∈[1,e],使得x0-f(x0)<-$\frac{1+b}{x_0}$成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,圆M与圆N交于A、B两点,以A为切点作两圆的切线分别交圆M和圆N于C,D两点,延长DB交圆M于点E,延长CB交圆N于点F.
(1)求证:△ABC~△DBA;
(2)求证:CF=DE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在直三棱柱ABC-A1B1C1中,AB=BC=2,AA1=2$\sqrt{3}$,CB⊥AB,D为线段A1B上一点,且A1D=3,P为AA1的中点.
(1)求证:AD⊥A1C;
(2)求二面角P-BC-A1的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=|x-2|-|2x+l|.
(I)求不等式f(x)≤x的解集;
(II )若不等式f(x)≥t2-t在x∈[-2,-1]时恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=ex(x2+ax+b)有极值点x1,x2(x1<x2),且f(x1)=x1,则关于x的方程f2(x)+(2+a)f(x)+a+b=0的不同实根个数为(  )
A.0B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB=2,点F是PB的中点,点E在棱BC上移动.
(1)当E为BC的中点时,试判断EF与平面PAC的位置关系,并请说明理由;
(2)当E为BC的中点时,求直线EF与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,PA=AB,则直线PB与平面ABC所成的角是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

同步练习册答案