分析 利用双曲线$\frac{x{\;}^{2}}{4}$-$\frac{y{\;}^{2}}{b{\;}^{2}}$=1(b>0)的渐近线方程为y=±$\frac{1}{2}$x,求出b,可得c,即可求出双曲线右焦点坐标.
解答 解:∵双曲线$\frac{x{\;}^{2}}{4}$-$\frac{y{\;}^{2}}{b{\;}^{2}}$=1(b>0)的渐近线方程为y=±$\frac{1}{2}$x,
∴$\frac{b}{2}=\frac{1}{2}$,
∴b=1,
∴c=$\sqrt{4+1}$=$\sqrt{5}$,
∴双曲线右焦点坐标为($\sqrt{5}$,0),
故答案为($\sqrt{5}$,0).
点评 本题主要考查双曲线右焦点坐标的求解,根据双曲线的渐近线方程,求出b的值是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | R<Q<P | B. | Q<R<P | C. | P<Q<R | D. | R<P<Q |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 24 | B. | 32 | C. | 48 | D. | 64 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,使得${e^{x_0}}≤0$ | B. | 命题?x∈R,2x>x2的否定是真命题 | ||
| C. | {x|x-1<0}∩{x|x2-4>0}=(-2,0) | D. | a>1,b>1的充分不必要条件是ab>1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com