精英家教网 > 高中数学 > 题目详情
20.若$\frac{π}{2}$<θ<π,P=3cosθ,Q=(cosθ)3,R=(cosθ)${\;}^{\frac{1}{3}}$,则P,Q,R的大小关系为(  )
A.R<Q<PB.Q<R<PC.P<Q<RD.R<P<Q

分析 判断三个数的范围,即可比较大小.

解答 解:$\frac{π}{2}$<θ<π,cosθ∈(-1,0)且P=3cosθ<1,Q=(cosθ)3∈(-1,0);
R=(cosθ)${\;}^{\frac{1}{3}}$,∈(0,1).
(cosθ)3>(cosθ)${\;}^{\frac{1}{3}}$,
可得:Q<R<P.
故选:B.

点评 本题考查三角函数线的应用,指数函数的性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,四边形ABCD是平行四边形,AE⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=$\sqrt{6}$,DE=3,∠BAD=60°,G为BC的中点.
(1)求证:FG∥平面BED;
(2)求证:平面BED⊥平面AED;
(3)求多面体EF-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若f(x+1)=2f(x),则f(x)的解析式可以是(  )
A.f(x)=2xB.f(x)=2xC.f(x)=x+2D.f(x)=log2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若双曲线$\frac{x{\;}^{2}}{4}$-$\frac{y{\;}^{2}}{b{\;}^{2}}$=1(b>0)的渐近线方程为y=±$\frac{1}{2}$x,则右焦点坐标为($\sqrt{5}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.数列{an}中,a1=1,an+1=2an-2n,则a17(  )
A.-15×216B.15×217C.-16×216D.16×217

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=|x-1|-|2x+3|.
(1)解不等式f(x)>2;
(2)关于x的不等式f(x)≤$\frac{3}{2}$a2-a的解集为R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设0<a≤$\frac{5}{4}$,若满足不等式|x-a|<b的一切实数x,亦满足不等式|x-a2|<$\frac{1}{2}$,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图正方体中,O,O1为底面中心,以OO1所在直线为旋转轴,线段BC1形成的几何体的正视图为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|12-5x-2x2>0},B={x|x2-ax+b≤0}满足A∩B=∅,A∪B=(-4,8],求实数a,b的值.

查看答案和解析>>

同步练习册答案