精英家教网 > 高中数学 > 题目详情
10.已知集合A={x|12-5x-2x2>0},B={x|x2-ax+b≤0}满足A∩B=∅,A∪B=(-4,8],求实数a,b的值.

分析 求出集合A={x|-4<x<$\frac{3}{2}$},由A∩B=∅,A∪B=(-4,8],得到B={x|x2-ax+b≤0}={x|$\frac{3}{2}≤x≤8$},由此能求出a,b的值.

解答 解:∵集合A={x|12-5x-2x2>0}={x|-4<x<$\frac{3}{2}$},B={x|x2-ax+b≤0},
满足A∩B=∅,A∪B=(-4,8],
∴B={x|x2-ax+b≤0}={x|$\frac{3}{2}≤x≤8$},
∴$\frac{3}{2}$,8是方程|x2-ax+b=0的两个根,
∴$\left\{\begin{array}{l}{\frac{3}{2}+8=a}\\{\frac{3}{2}×8=b}\end{array}\right.$,解得a=$\frac{19}{2}$,b=12.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意一元二次不等式的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若$\frac{π}{2}$<θ<π,P=3cosθ,Q=(cosθ)3,R=(cosθ)${\;}^{\frac{1}{3}}$,则P,Q,R的大小关系为(  )
A.R<Q<PB.Q<R<PC.P<Q<RD.R<P<Q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=x|x|+px2,x∈R,下列说法正确的是(  )
A.偶函数B.奇函数C.不具有奇偶函D.奇偶性与p有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题中,真命题的是(  )
A.?x0∈R,使得${e^{x_0}}≤0$B.命题?x∈R,2x>x2的否定是真命题
C.{x|x-1<0}∩{x|x2-4>0}=(-2,0)D.a>1,b>1的充分不必要条件是ab>1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知x>-1,当x=1时,x+$\frac{4}{x+1}$的值最小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=$\frac{\sqrt{lo{g}_{0.5}x-1}}{2x-1}$的定义域是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.幂函数y=(m2-m-1)x-5m-3在(0,+∞)上为减函数,则实数m的值为(  )
A.m=2B.m=-1C.m=2 或m=-1D.$m>-\frac{1}{5}$且m≠$\frac{1+\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数y=f (x)是定义在R上的偶函数,当x≤0时,y=f (x)是减函数,若|x1|<|x2|,则(  )
A.f (x1)-f (x2)<0B.f (x1)-f (x2)>0C.f (x1)+f (x2)<0D.f (x1)+f (x2)>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=x2-2x的定义域为$[{-\frac{1}{3},\frac{11}{5}}]$,值域为[-1,$\frac{7}{9}$].

查看答案和解析>>

同步练习册答案