(Ⅰ)由已知得t=0,
=2mx+n,
则
="n=0,"
=?2m+n=?2,从而n="0," m=1,
∴f(x)=x
2.
则
="2x, " g¢(x)=3ax
2+b.
由f(1)="g(1),"
=g¢(1)得a+b?3=2,3a+b=2,解得a=?1,b=5,
∴g(x)=?x
3+5x?3(x>0) ……4分
(Ⅱ)∵F(x)=f(x)?g(x)=x
3+x
2?5x+3(x>0),
求导数得F¢(x)=3x
2+2x?5=(x?1)(3x+5)
∴F(x)在(0,1)单调递减,在(1,+¥)单调递增,从而F(x)的极小值为F(1)="0. " ……8分
(Ⅲ)因 f(x)与g(x)有一个公共点(1,1),而函数f(x)在点(1,1)的切线方程为y=2x?1.
下面验证
都成立即可.
由(x?1)
2=x
2?2x+1³0,得x
2³2x?1,知f(x)³2x?1恒成立.
设h(x)=?x
3+5x?3?(2x?1)= ?x
3+3x?2(x)>0,
求导数得h¢(x)=?3x
2+3=?3(x+1)(x?1)(x>0),
∴h(x)在(0,1)上单调递增,在(1,+¥)上单调递减,所以h(x)=?x
3+5x?3?(2x?1)的最大值为h(1)=0,
所以?x
3+5x?3£2x?1,即g(x)£2x?1恒成立.
故存在这样的实常数k和m,且k=2,m=?1