精英家教网 > 高中数学 > 题目详情
17.圆ρ=2cos($θ+\frac{π}{4}$)的圆心为(  )
A.(1,$\frac{π}{4}$)B.(1,$\frac{3π}{4}$)C.(1,$\frac{5π}{4}$)D.(1,$\frac{7π}{4}$)

分析 ρ=2cos($θ+\frac{π}{4}$)即ρ2=2ρcos($θ+\frac{π}{4}$),展开为ρ2=2ρ×$\frac{\sqrt{2}}{2}$(cosθ-sinθ),把ρ2=x2+y2,x=ρcosθ,y=ρsinθ,化为直角坐标方程,可得圆心的直角坐标,进而化为极坐标.

解答 解:ρ=2cos($θ+\frac{π}{4}$)即ρ2=2ρcos($θ+\frac{π}{4}$),
展开为ρ2=2ρ×$\frac{\sqrt{2}}{2}$(cosθ-sinθ),化为直角坐标方程:x2+y2=$\sqrt{2}$(x-y),
∴$(x-\frac{\sqrt{2}}{2})^{2}$+$(y+\frac{\sqrt{2}}{2})^{2}$=1,
可得圆心为C$(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2})$,可得$ρ=\sqrt{(\frac{\sqrt{2}}{2})^{2}+(-\frac{\sqrt{2}}{2})^{2}}$=1,
tanθ=-1,又点C在第四象限,θ=$\frac{7π}{4}$.
∴圆心C$(1,\frac{7π}{4})$.
故选:D.

点评 本题考查了极坐标化为直角坐标、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,则输出的结果S=(  )
A.$\frac{1}{2016}$B.$\frac{2015}{2016}$C.$\frac{1}{2015}$D.$\frac{2014}{2015}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且C=$\frac{2π}{3}$,a=6.
(Ⅰ)若c=14,求sinA的值;
(Ⅱ)若△ABC的面积为3$\sqrt{3}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.国内某知名大学有男生14000人,女生10000人.该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取120人,统计他们平均每天运动的时间,如表:(平均每天运动的时间单位:小时,该校学生平均每天运动的时间范围是[0,3])
男生平均每天运动的时间分布情况:
平均每天运动的时间[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人数212231810x
女生平均每天运动的时间分布情况:
平均每天运动的时间[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人数51218103y
(Ⅰ)请根据样本估算该校男生平均每天运动的时间(结果精确到0.1);
(Ⅱ)若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生为“非运动达人”.
①请根据样本估算该校“运动达人”的数量;
②请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断能否在犯错误的概率不超过0.05的前提下认为“是否为‘运动达人’与性别有关?”
运动达人非运动达人总  计
男  生
女  生
总  计
参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数y=f(x-1)的图象关于x=1对称,y=f′(x)是y=f(x)的导数,且当x∈(-∞,0)时,f(x)+xf′(x)<0成立,已知a=f(log52)log32,b=f(log52)log52,c=f(2),则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=(2a+1)x-aln(x-1)-b.
(1)讨论f(x)的单调性;
(2)若g(x)=f(x+1),当a=1时,g(x)在区间($\frac{1}{{e}^{2}}$,e)上恰有一个零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,曲线C1的参数方程为$\left\{\begin{array}{l}x=2cosα+\sqrt{3}\\ y=2sinα+1\end{array}$(α为参数),曲线C2的极坐标方程为ρ=2cosθ.
(Ⅰ)求曲线C1的极坐标方程;
(Ⅱ)若射线θ=$\frac{π}{6}$(ρ≥0)交曲线C1和C2于A、B(A、B异于原点),求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.扇形OAB中,∠AOB=90°,OA=2,其中C是OA的中点,P是$\widehat{AB}$上的动点(含端点),若实数λ,μ满足$\overrightarrow{OP}$=λ$\overrightarrow{OC}$+μ$\overrightarrow{OB}$,则λ+μ的取值范围是(  )
A.[1,$\sqrt{2}$]B.[1,$\sqrt{3}$]C.[1,2]D.[1,$\sqrt{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数的解析式;
(2)设$\frac{1}{12}$π<x<$\frac{11}{12}$π,且方程f(x)=m有两个不同的实数根,求实数m的取值范围和这两个根的和.

查看答案和解析>>

同步练习册答案