| A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | a>c>b |
分析 利用函数y=f(x-1)的图象关于直线x=1对称,可得函数y=f(x)的图象关于y轴对称,是偶函数.令g(x)=xf(x),利用已知当x∈(-∞,0)时,g′(x)=f(x)+xf′(x)<0,可得函数g(x)在x∈(-∞,0)单调递减,进而得到函数g(x)在(0,+∞)上单调递增.再根据log22=1>log32>log52>0.即可得到a,b,c的大小.
解答 解:∵函数y=f(x-1)的图象关于直线x=1对称,
∴函数y=f(x)的图象关于y轴对称,是偶函数.
令g(x)=xf(x),则g(x)为奇函数,
则当x∈(-∞,0)时,g′(x)=f(x)+xf′(x)<0,
∴函数g(x)在x∈(-∞,0)单调递减,
因此函数g(x)在(0,+∞)上单调递减,
∵log22=1>log32>log52>0.
∴g(2)<g(log32)<g(log52),
即2f(2)<f(log32)log32<f(log52)log52,
而f(2)<2f(2),f(log52)log52<f(log52)log32,
∴c<b<a.
故选:A.
点评 熟练掌握轴对称、奇偶函数的性质、利用导数研究函数的单调性、对数的运算性质等是解题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,$\frac{π}{4}$) | B. | (1,$\frac{3π}{4}$) | C. | (1,$\frac{5π}{4}$) | D. | (1,$\frac{7π}{4}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2}$,1) | B. | ($\frac{1}{4}$,$\frac{7}{8}$) | C. | ($\frac{1}{4}$,$\frac{1}{2}$) | D. | ($\frac{1}{2}$,$\frac{7}{8}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>0 | B. | a≥-$\frac{1}{2}$ | C. | -$\frac{1}{2}$<a<0 | D. | -$\frac{1}{2}$<a≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | tanα=$\frac{4}{3}$ | B. | cosα=$\frac{3}{5}$ | C. | sinα=$\frac{4}{5}$ | D. | tanα=-$\frac{4}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com