精英家教网 > 高中数学 > 题目详情
已知数列{an}和{bn}满足:对于任何n∈N*,有an=bn+1-bn,bn+2=(1+λ)bn+1-λbn(λ为非零常数),且b1=1,b2=2.
(1)求数列{an}和{bn}的通项公式;
(2)若b3是b6与b9的等差中项,试求λ的值,并研究:对任意的n∈N*,bn是否一定能是数列{bn}中某两项(不同于bn)的等差中项,并证明你的结论.
分析:(1)由bn+1=(1+λ)bn-λbn-1(n≥2,λ≠0)得,bn+1-bn=λ(bn-bn-1).所以ann-1.由bn-b1=(b2-b1)+(b3-b2)+…+(bn-bn-1),得bn-b1=1+λ+…+λn-2(n≥2),从而得到数列{an}和{bn}的通项公式.
(2)当λ=1时,b3不是b6与b9的等差中项,不合题意;当λ≠1时,由2b3=b6+b9得λ85-2λ2=0,对任意的n∈N*,bn是bn+3与bn+6的等差中项.由bn+3+bn+6-2bn=
λn-1
1-λ
(2-λ3-λ6)=0
,知bn=
bn+3+bn+6
2
,故对任意的n∈N*,bn是bn+3与bn+6的等差中项.
解答:解:(1)由bn+1=(1+λ)bn-λbn-1(n≥2,λ≠0)得,bn+1-bn=λ(bn-bn-1).
又a1=b2-b1=1,λ≠0,an≠0.
所以,{an}是首项为1,公比为λ的等比数列,ann-1.(5分)
由bn-b1=(b2-b1)+(b3-b2)+…+(bn-bn-1),得bn-b1=1+λ+…+λn-2(n≥2)
所以,当n≥2时,bn=
1+
1-λn-1
1-λ
,λ≠1
n,λ=1.
.(6分)
上式对n=1显然成立(1分)
(2)当λ=1时,b3不是b6与b9的等差中项,不合题意;.(1分)
当λ≠1时,由2b3=b6+b9得λ85-2λ2=0,
由λ≠0得λ63-2=0(可解得λ=-
32
)..(2分)
对任意的n∈N*,bn是bn+3与bn+6的等差中项(2分)
证明:∵bn+3+bn+6-2bn=
λn-1
1-λ
(2-λ3-λ6)=0
,∴bn=
bn+3+bn+6
2
,..(3分)
即,对任意的n∈N*,bn是bn+3与bn+6的等差中项.
点评:本题考查求解数列通项公式的方法和等差中项的性质与证明,解题时要注意递推公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足:a=1,a1=2,a2>0,bn=
a1an+1
(n∈N*)
.且{bn}是以
a为公比的等比数列.
(Ⅰ)证明:aa+2=a1a2
(Ⅱ)若a3n-1+2a2,证明数例{cx}是等比数例;
(Ⅲ)求和:
1
a1
+
1
a2
+
1
a3
+
1
a4
+
+
1
a2n-1
+
1
a2n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足a1=m,an+1an+n,bn=an-
2n
3
+
4
9

(1)当m=1时,求证:对于任意的实数λ,{an}一定不是等差数列;
(2)当λ=-
1
2
时,试判断{bn}是否为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和等比数列{bn}满足:a1=b1=4,a2=b2=2,a3=1,且数列{an+1-an}是等差数列,n∈N*
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)问是否存在k∈N*,使得ak-bk∈(
12
,3]
?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足:a1=λ,an+1=
23
an+n-4,bn=(-1)n(an-3n+21)其中λ为实数,且λ≠-18,n为正整数.
(Ⅰ)求证:{bn}是等比数列;
(Ⅱ)设0<a<b,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•孝感模拟)已知数列{an}和{bn}满足a1=1且bn=1-2anbn+1=
bn
1-4 
a
2
n

(I)证明:数列{
1
an
}是等差数列,并求数列{an}的通项公式;
(Ⅱ)求使不等式(1+a1)(1+a2)…(1+an)≥k
1
b2b3bnbn+1 
对任意正整数n都成立的最大实数k.

查看答案和解析>>

同步练习册答案