| A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | -$\frac{3}{4}$ | D. | -$\frac{4}{3}$ |
分析 利用同角三角函数的基本关系,求得sinα的值,可得tanα的值,再利用二倍角的正切公式求得tan2α的值.
解答 解:∵α∈(π,2π),cosα=-$\frac{\sqrt{5}}{5}$,∴α为第三象限角,故sinα=-$\sqrt{{1-cos}^{2}α}$=-$\frac{2\sqrt{5}}{5}$,
∴tanα=$\frac{sinα}{cosα}$=2,∴tan2α=$\frac{2tanα}{1{-tan}^{2}α}$=-$\frac{4}{3}$,
故选:D.
点评 本题主要考查同角三角函数的基本关系的应用,二倍角的正切公式的应用,以及三角函数在各个象限中的符号,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-3,+∞) | B. | (-∞,-3] | C. | [$\sqrt{2}$,+∞) | D. | (-∞,$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,2) | B. | [1,2) | C. | (0,1) | D. | ∅ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com