精英家教网 > 高中数学 > 题目详情

记函数f(x)=数学公式的定义域为集合A,函数g(x)=数学公式的定义域为集合B.
(1)求A∩B和A∪B;
(2)若C={x|x-p>0},C⊆A,求实数p的取值范围.

解:(1)∵f(x)=的定义域为集合A,
∴A={x|x-2>0}={x|x>2},
∵函数g(x)=的定义域为集合B,
∴B={x|9-x2≥0}={x|-3≤x≤3},
∴A∩B={x|-2<x≤3},
A∪B={x|x≥-3}.
(2)∵C={x|x-p>0}={x|x>p},A={x|x>2},
且C⊆A,
∴p≥2.
分析:(1)由f(x)=的定义域为集合A,知A={x|x-2>0}={x|x>2},由函数g(x)=的定义域为集合B,知B={x|9-x2≥0}={x|-3≤x≤3},由此能求出A∩B和A∪B.
(2)由C={x|x-p>0}={x|x>p},A={x|x>2},且C⊆A,能求出实数p的取值范围.
点评:本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
2x
2x+
2
的图象上两点P1(x1,y1) P2(x2,y2),若
OP
=
1
2
OP1
+
OP2
),且点P的横坐标为
1
2
(1)求证:P点的纵坐标为定值,并求出这个定值;(2)若Sn=
n
i=1
f(
i
n
)
,n∈N*,求Sn
(3)记Tn为数列{
1
(Sn+
2
)(Sn+1+
2
)
}的前n项和,若Tn<a(Sn+1+
2
)对一切n∈N*都成立,试求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-x,其图象记为曲线C.
(1)求函数f(x)的单调区间;
(2)证明:若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1))处的切线交于另一点P2(x2,f(x2)),曲线C与其在点P2(x2,f(x2))处的切线交于另一点P3(x3,f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积分别记为S1,S2,则
S1S2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x
2x+
2
的图象上两点P1(x1,y1)、P2(x2,y2),若
OP
=
1
2
OP1
+
OP2
),且点P的横坐标为
1
2

(1)求证:P点的纵坐标为定值,并求出这个定值;
(2)求Sn=f(
1
n
)+f(
2
n
)+A+f(
n-1
n
)+f(
n
n

(3)记Tn为数列{
1
(Sn+
2
)(Sn+1+
2
)
}的前n项和,若Tn<a(Sn+1+
2
)对一切n∈N*都成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+log2
x
3-x
(x∈(0,3))

(1)求证:f(x)+f(3-x)为定值.
(2)记S(n)=
1
2n
2n-1
i=1
f(1+
i
2n
)(n∈N*)
,求S(n).
(3)若函数f(x)的图象与直线x=1,x=2以及x轴所围成的封闭图形的面积为S,试探究S(n)与S的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)已知函数f(x)=x3-x,其图象记为曲线C.
(i)求函数f(x)的单调区间;
(ii)证明:若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1))处的切线交于另一点P2(x2,f(x2)),曲线C与其在点P2(x2,f(x2))处的切线交于另一点P3(x3,f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积记为S1,S2.则
S1S2
为定值;
(Ⅱ)对于一般的三次函数g(x)=ax3+bx2+cx+d(a≠0),请给出类似于(Ⅰ)(ii)的正确命题,并予以证明.

查看答案和解析>>

同步练习册答案