【题目】已知数列{an}满足a1=1,an+1= (n∈N*),若bn+1=(n﹣2λ)( +1)(n∈N*),b1=﹣λ,且数列{bn}是单调递增数列,則实数λ的取值范围是( )
A.
B.
C.
D.
【答案】C
【解析】解:由an+1= 得,
则, +1=2( +1)
由a1=1,得 +1=2,
∴数列{ +1}是首项为2,公比为2的等比数列,
∴ +1=2×2n﹣1=2n ,
由bn+1=(n﹣2λ)( +1)=(n﹣2λ)2n ,
∵b1=﹣λ,
b2=(1﹣2λ)2=2﹣4λ,
由b2>b1 , 得2﹣4λ>﹣λ,得λ< ,
此时bn+1=(n﹣2λ)2n为增函数,满足题意.
∴实数λ的取值范围是(﹣∞, ).
故选:C
【考点精析】本题主要考查了数列的通项公式的相关知识点,需要掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】下列命题中正确命题的个数是()
①若直线与直线平行,则直线平行于经过直线的所有平面;②平行于同一个平面的两条直线互相平行;③若是两条直线,是两个平面,且,,则是异面直线;④若直线恒过定点(1,0),则直线方程可设为.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(1)求证:AB1⊥平面A1BD;
(2)求锐二面角A-A1D-B的余弦值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=3sin(4x+ )图象上所有点的横坐标伸长到原来的2倍,再向右平移 个单位长度,得到函数y=g(x)的图象,则y=g(x)图象的一条对称轴是( )
A.x=
B.x=
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sinxcos(x+ )+ .
(1)求函数f(x)的单调递减区间;
(2)求函数f(x)在区间[0, ]上的最大值及最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列{an}的前n项和为Sn , 且a1=1,S7=28,记bn=[lgan],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1,则数列{bn}的前1000项和为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com