分析 由最大值求得A,由周期求得ω,由函数的零点求得φ,可得函数的解析式,从而求得使函数f(x)取得最大值的最小正数x0的值.
解答 解:由题意可得A=4,$\frac{2π}{ω}$=π,∴ω=2,f(x)=4sin(2x+φ).
由f($\frac{π}{3}$)=4sin($\frac{2π}{3}$+φ)=0,可得sin($\frac{2π}{3}$+φ)=0,
∴φ=$\frac{π}{3}$,f(x)=4sin(2x+$\frac{π}{3}$).
再根据sin(2x0+$\frac{π}{3}$)=1,可得最小正数x0=$\frac{π}{12}$,
故答案为:$\frac{π}{12}$.
点评 本题主要考查正弦函数的图象和性质,正弦函数的最值,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,2) | B. | [2,7] | C. | [2,4] | D. | [0,7] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈N,x3<3x | B. | ?x∈N,x3≥3x | C. | ?x∈N,x3≥3x | D. | ?x∈N,x3=3x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com