如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED为正方形,且所在平面垂直于平面ABC.
(Ⅰ)证明:平面ADE∥平面BCF;
(Ⅱ)求二面角D-AE-F的正切值.
(Ⅰ)利用线线平行,则面面平行证明,即可得证;(Ⅱ).
解析试题分析:(Ⅰ)先证明四边形为平行四边形得,又,所以平面平面;(Ⅱ)建立空间直角坐标系,先求出平面的一个法向量,再求出平面的一个法向量,然后利用公式即可求出余弦值为,进而求出正切值.
试题解析:(Ⅰ)取的中点,的中点,连接.则,又平面平面,所以平面,同理平面,所以又易得,所以四边形为平行四边形,所以,
又,所以平面平面. (6分)
(Ⅱ)建立如图所示的空间直角坐标系,设,则,,,,,.
设平面的一个法向量是,则
,
令,得. (9分)
设平面的一个法向量是,则
令,得.
所以,
易知二面角为锐二面角,故其余弦值为,
所以二面角的正切值为. (12分)
考点:1.平面与平面垂直的判定方法;2.二面角的求法.
科目:高中数学 来源: 题型:解答题
如图是一个直三棱柱被削去一部分后的几何体的直观图与三视图中的侧视图、俯视图.在直观图中,是的中点.又已知侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)求证:EM∥平面ABC;
(2)试问在棱DC上是否存在点N,使NM⊥平面? 若存在,确定
点N的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一个多面体的直观图、正视图、侧视图、俯视图如图所示,M、N分别为A1B、B1C1的中点.
(1)求证:MN//平面ACC1A1;
(2)求证:MN^平面A1BC.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面ABC是正三角形.
(1)当正视图方向与向量的方向相同时,画出三棱锥A—BCD的三视图;(要求标出尺寸)
(2)求二面角B—AC—D的余弦值;
(3)在线段AC上是否存在一点E,使ED与平面BCD成30°角? 若存在,确定点E的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,已知BD=2AD=2PD=8,AB=2DC=4.
(Ⅰ)设M是PC上一点,证明:平面MBD⊥平面PAD;
(Ⅱ)若M是PC的中点,求棱锥P-DMB的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com