精英家教网 > 高中数学 > 题目详情

如图是一个直三棱柱被削去一部分后的几何体的直观图与三视图中的侧视图、俯视图.在直观图中,的中点.又已知侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.

(1)求证:EM∥平面ABC;
(2)试问在棱DC上是否存在点N,使NM⊥平面? 若存在,确定
点N的位置;若不存在,请说明理由.

(1)详见解析;(2)存在,

解析试题分析:(1)要证明直线和平面平行,只需证明直线和平面内的一条直线平行即可,该题取中点,连,先证,则四边形是平行四边形,从而,进而证明;(2)假设上存在满足条件的点,此时面内必存在垂直于的两条直线,容易证明,所以,又,所以,接下来再能保证即可,此时必有,进而根据成比例线段可求出的长度,即点的位置确定.
试题解析: (Ⅰ)取中点,连
,又因为,而,所以

(2)在上取点使,连接
,又
所以,又因为,所以,所以,又,所以,故.
考点:1、直线和平面平行的判定;2、三角形的相似;3、线面垂直的判定和性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为直角梯形,且,平面底面的中点,是棱的中点,.

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧棱底面的中点,.

(Ⅰ)求证://平面
(Ⅱ)设,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直三棱柱ABC-A1B1C1中,AB=AA1,∠CAB=.

(1)证明:CB1⊥BA1
(2)已知AB=2,BC=,求三棱锥C1-ABA1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱中,侧棱与底面垂直,分别是的中点

(1)求证:∥平面
(2)求证:⊥平面
(3)求三棱锥的体积的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是矩形边上的点,边的中点,,现将沿边折至位置,且平面平面.

⑴求证:平面平面
⑵求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,分别为的中点,上的点,且

(I)证明:∥平面
(Ⅱ)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED为正方形,且所在平面垂直于平面ABC.

(Ⅰ)证明:平面ADE∥平面BCF;
(Ⅱ)求二面角D-AE-F的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

ABC的边AB,BC,CA上分别取D,E,F.使得DE=BE,FE=CE,又点O是△ADF的外心。

(Ⅰ)证明:D,E,F,O四点共圆;
(Ⅱ)证明:O在∠DEF的平分线上.

查看答案和解析>>

同步练习册答案