精英家教网 > 高中数学 > 题目详情
6.已知椭圆的长轴长是8,离心率是$\frac{3}{4}$,则此椭圆的标准方程是$\frac{x^2}{16}+\frac{y^2}{7}=1$或$\frac{x^2}{7}+\frac{y^2}{16}=1$.

分析 由已知结合椭圆定义可得椭圆标准方程.

解答 解:由题意知,2a=8,∴a=4,
又$e=\frac{c}{a}=\frac{3}{4}$,∴c=3,
则b2=a2-c2=7.
当椭圆的焦点在x轴上时,椭圆方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{7}=1$;
当椭圆的焦点在y轴上时,椭圆方程为$\frac{x^2}{7}+\frac{y^2}{16}=1$.
故答案为:$\frac{x^2}{16}+\frac{y^2}{7}=1$或$\frac{x^2}{7}+\frac{y^2}{16}=1$.

点评 本题考查椭圆的简单性质,考查椭圆方程的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若α∈(0,π),且sinα+cosα=-$\frac{\sqrt{3}}{3}$,则α的取值范围是(  )
A.(0,$\frac{π}{2}$)B.($\frac{π}{2}$,π)C.($\frac{π}{2}$,$\frac{3π}{4}$)D.($\frac{3π}{4}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xoy中,已知直线C1:$\left\{{\begin{array}{l}{x=t+1}\\{y=7-2t}\end{array}}$(t为参数)与椭圆C2:$\left\{{\begin{array}{l}{x=acosθ}\\{y=3sinθ}\end{array}}$(θ为参数,a>0)的一条准线的交点位于y轴上,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若tan(π+α)=3,则sin(-α)cos(π-α)=(  )
A.$-\frac{3}{10}$B.$\frac{3}{10}$C.$-\frac{1}{10}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,则下列判断错误的是(  )
A.A=2B.ω=2C.f(0)=1D.φ=$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{m}$=1的一条渐近线的斜率的取值范围为($\frac{\sqrt{3}}{2}$,$\frac{\sqrt{5}}{2}$),求焦点在x轴上的椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{m}$=1的离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知椭圆$C:\frac{x^2}{4}+{y^2}=1,A({2,0})$,点P在椭圆C上,且OP⊥PA,其中O为坐标原点,则点P的坐标为(  )
A.$({\frac{2}{3},±\frac{{2\sqrt{2}}}{3}})$B.$({\frac{{2\sqrt{5}}}{3},±\frac{2}{3}})$C.$({-\frac{2}{3},±\frac{{2\sqrt{2}}}{3}})$D.$({-\frac{{2\sqrt{5}}}{3},±\frac{2}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设Sn是等差数列{an}的前n项和,若a2+a3+a4=3,则S5=(  )
A.5B.7C.9D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率$e=\frac{{\sqrt{3}}}{2}$,过椭圆的左焦点F且倾斜角为30°的直线与圆x2+y2=b2相交所得弦的长度为1.
(I)求椭圆E的方程;
(Ⅱ)若动直线l交椭圆E于不同两点M(x1,y1),N(x2,y2),设$\overrightarrow{OP}$=(bx1,ay1),$\overrightarrow{OQ}$=((bx2,ay2),O为坐标原点.当以线段PQ为直径的圆恰好过点O时,求证:△MON的面积为定值,并求出该定值.

查看答案和解析>>

同步练习册答案