分析 (I)运用离心率公式和直线与圆相交的弦长公式,结合a,b,c的关系,解方程可得a,b,进而得到椭圆方程;
(Ⅱ)讨论直线MN的斜率存在和不存在,以线段PQ为直径的圆恰好过点O,可得$\overrightarrow{OP}$⊥$\overrightarrow{OQ}$,运用向量的数量积为0,联立直线方程和椭圆方程,运用韦达定理,化简整理,由三角形的面积公式,计算即可得到定值.
解答 解:(I)由题意可得e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,
过椭圆的左焦点F(-c,0)且倾斜角为30°的直线方程为:y=$\frac{\sqrt{3}}{3}$(x+c),
由直线与圆x2+y2=b2相交所得弦的长度为1,
可得2$\sqrt{{b}^{2}-(\frac{\sqrt{3}c}{\sqrt{3+9}})^{2}}$=2$\sqrt{{b}^{2}-\frac{{c}^{2}}{4}}$=1,
又a2-b2=c2,
解方程可得a=2,b=1,c=$\sqrt{3}$,
即有椭圆的方程为$\frac{{x}^{2}}{4}$+y2=1;
(Ⅱ)证明:(1)当MN的斜率不存在时,x1=x2,y1=-y2,
以线段PQ为直径的圆恰好过点O,可得$\overrightarrow{OP}$⊥$\overrightarrow{OQ}$,
即有$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,即有b2x1x2+a2y1y2=0,
即有x1x2+4y1y2=0,即x12-4y12=0,
又(x1,y1)在椭圆上,x12+4y12=4,
可得x12=2,|y1|=$\frac{\sqrt{2}}{2}$,
S△OMN=$\frac{1}{2}$|x1|•|y1-y2|=$\frac{1}{2}$•$\sqrt{2}$•$\sqrt{2}$=1;
(2)当MN的斜率存在,设MN的方程为y=kx+t,
代入椭圆方程(1+4k2)x2+8ktx+4t2-4=0,
△=64k2t2-4(1+4k2)(4t2-4)=4k2-t2+1>0,
x1+x2=-$\frac{8kt}{1+4{k}^{2}}$,x1x2=$\frac{4{t}^{2}-4}{1+4{k}^{2}}$,
又$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,即有x1x2+4y1y2=0,
y1=kx1+t,y2=kx2+t,
(1+4k2)x1x2+4kt(x1+x2)+4t2=0,
代入整理,可得2t2=1+4k2,
即有|MN|=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{1+{k}^{2}}$•$\sqrt{(\frac{-8kt}{1+4{k}^{2}})^{2}-\frac{16{t}^{2}-16t}{1+4{k}^{2}}}$
=$\sqrt{1+{k}^{2}}$•$\frac{4\sqrt{1+4{k}^{2}-{t}^{2}}}{1+4{k}^{2}}$,
又O到直线的距离为d=$\frac{|t|}{\sqrt{1+{k}^{2}}}$,
S△OMN=$\frac{1}{2}$d•|MN|=$\frac{1}{2}$|t|•$\frac{4\sqrt{1+4{k}^{2}-{t}^{2}}}{1+4{k}^{2}}$
=$\frac{1}{2}$|t|•$\frac{4|t|}{2{t}^{2}}$=1.
故△MON的面积为定值1.
点评 本题考查椭圆的方程的求法,注意运用离心率公式和直线与圆相交的弦长公式,考查三角形的面积的求法,注意讨论直线的斜率是否存在,联立直线方程和椭圆方程,运用韦达定理和点到直线的距离公式,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1] | B. | [-1,1] | C. | [1,2)∪(2,+∞) | D. | $[{-1,-\frac{1}{2}})∪({-\frac{1}{2},1}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com