精英家教网 > 高中数学 > 题目详情
4.椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,其两焦点为F1,F2,点P在椭圆C上,且 $|{P{F_1}}|=3,|{P{F_2}}|=5,e=\frac{{\sqrt{3}}}{2}$,求椭圆C的方程.

分析 由椭圆的定义可得:|PF1|+|PF2|=2a=3+5,又$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,a2=b2+c2,联立解出即可得出.

解答 解:由椭圆的定义可得:|PF1|+|PF2|=2a=3+5,
又$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,a2=b2+c2
解得a=4,c=2$\sqrt{3}$,b=2.
∴椭圆C的方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}$=1.

点评 本题考查了椭圆的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若tan(π+α)=3,则sin(-α)cos(π-α)=(  )
A.$-\frac{3}{10}$B.$\frac{3}{10}$C.$-\frac{1}{10}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设Sn是等差数列{an}的前n项和,若a2+a3+a4=3,则S5=(  )
A.5B.7C.9D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.甲乙两组数学兴趣小组的同学举行了赛前模拟考试,成绩记录如下(单位:分):
甲:79,81,82,78,95,93,84,88
乙:95,80,92,83,75,85,90,80
(1)画出甲、乙两位学生成绩的茎叶图,;
(2)计算甲、乙两组同学成绩的平均分和方差,并从统计学的角度分析,哪组同学在这次模拟考试中发挥比较稳定;
(3)在甲、乙两组同学中,若对成绩不低于90分得再随机地抽3名同学进行培训,求抽出的3人中既有甲组同学又有乙组同学的概率.
(参考公式:样本数据x1,x2,…,xn的标准差:
s=$\sqrt{\frac{1}{n}[({x}_{1}-\overline{x})^{2}+({x}_{2}-\overline{x})^{2}+…+({x}_{n}-\overline{x})^{2}]}$,其中$\overline{x}$为样本平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,点A的坐标为(1,0),点C的坐标为(2,4),函数f(x)=x2,四边形ABCD是矩形,则阴影区域的面积等于(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.2D.$\frac{7}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=x2-ax,g(x)=|x-a|,其中a为实数.
(I)若f(x)+g(x)是偶函数,求实数a的值;
(Ⅱ)设t∈R,若?a∈[0,3],对?x∈[0,3],都有f(x)+l≥tg(x)成立,求实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率$e=\frac{{\sqrt{3}}}{2}$,过椭圆的左焦点F且倾斜角为30°的直线与圆x2+y2=b2相交所得弦的长度为1.
(I)求椭圆E的方程;
(Ⅱ)若动直线l交椭圆E于不同两点M(x1,y1),N(x2,y2),设$\overrightarrow{OP}$=(bx1,ay1),$\overrightarrow{OQ}$=((bx2,ay2),O为坐标原点.当以线段PQ为直径的圆恰好过点O时,求证:△MON的面积为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某企业对其生产的一批产品进行检测,得出每件产品中某种物质含量(单位:克)的频率分布直方图如图所示.
(1)估计产品中该物质含量的中位数及平均数(同一组数据用该区间的中点值作代表);
(2)规定产品的级别如表:
产品级别CBA
某种物质含量范围[60,70)[70,80)[80,90)
若生产1件A级品可获利润100元,生产1件B级品可获利润50元,生产1件C级品亏损50元.现管理人员从三个等级的产品中采用分层抽样的方式抽取10件产品,试用样本估计生产1件该产品的平均利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示的几何体中,四边形ABCD为梯形,AD∥BC,AB⊥平面BEC,EC⊥CB.已知BC=2AD=2AB=2.
(I)证明:BD⊥平面DEC;
(Ⅱ)若EC=1,求AD与面BED所成角的正弦值.

查看答案和解析>>

同步练习册答案