精英家教网 > 高中数学 > 题目详情
7.已知α,β∈(0,$\frac{π}{2}$),满足tan(α+β)=9tanβ,则tanα的最大值为$\frac{4}{3}$.

分析 利用两角和的正切将tan(α+β)=9tanβ转化,整理为关于tanβ的一元二次方程,利用题意,结合韦达定理即可求得答案.

解答 解:∵tan(α+β)=9tanβ,
∴$\frac{tanα+tanβ}{1-tanαtanβ}$=9tanβ,
∴9tanαtan2β-8tanβ+tanα=0,①
∴α,β∈(0,$\frac{π}{2}$),
∴方程①有两正根,tanα>0,
∴△=64-36tan2α≥0,
∴0<tanα≤$\frac{4}{3}$.
∴tanα的最大值是$\frac{4}{3}$.
故答案为:$\frac{4}{3}$.

点评 本题考查两角和与差的正切函数,考查一元二次方程中韦达定理的应用,考查转化思想与方程思想,也可以先求得tanα,再利用基本不等式予以解决,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xoy中,已知直线C1:$\left\{{\begin{array}{l}{x=t+1}\\{y=7-2t}\end{array}}$(t为参数)与椭圆C2:$\left\{{\begin{array}{l}{x=acosθ}\\{y=3sinθ}\end{array}}$(θ为参数,a>0)的一条准线的交点位于y轴上,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知椭圆$C:\frac{x^2}{4}+{y^2}=1,A({2,0})$,点P在椭圆C上,且OP⊥PA,其中O为坐标原点,则点P的坐标为(  )
A.$({\frac{2}{3},±\frac{{2\sqrt{2}}}{3}})$B.$({\frac{{2\sqrt{5}}}{3},±\frac{2}{3}})$C.$({-\frac{2}{3},±\frac{{2\sqrt{2}}}{3}})$D.$({-\frac{{2\sqrt{5}}}{3},±\frac{2}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设Sn是等差数列{an}的前n项和,若a2+a3+a4=3,则S5=(  )
A.5B.7C.9D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,其短轴的下端点在抛物线x2=4y的准线上.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设O为坐标原点,M是直线l:x=2上的动点,F为椭圆的右焦点,过点F作OM的垂线与以为OM直径的圆C2相交于P,Q两点,与椭圆C1相交于A,B两点,如图所示.?
①若PQ=$\sqrt{6}$,求圆C2的方程;
②?设C2与四边形OAMB的面积分别为S1,S2,若S1=λS2,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.甲乙两组数学兴趣小组的同学举行了赛前模拟考试,成绩记录如下(单位:分):
甲:79,81,82,78,95,93,84,88
乙:95,80,92,83,75,85,90,80
(1)画出甲、乙两位学生成绩的茎叶图,;
(2)计算甲、乙两组同学成绩的平均分和方差,并从统计学的角度分析,哪组同学在这次模拟考试中发挥比较稳定;
(3)在甲、乙两组同学中,若对成绩不低于90分得再随机地抽3名同学进行培训,求抽出的3人中既有甲组同学又有乙组同学的概率.
(参考公式:样本数据x1,x2,…,xn的标准差:
s=$\sqrt{\frac{1}{n}[({x}_{1}-\overline{x})^{2}+({x}_{2}-\overline{x})^{2}+…+({x}_{n}-\overline{x})^{2}]}$,其中$\overline{x}$为样本平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,点A的坐标为(1,0),点C的坐标为(2,4),函数f(x)=x2,四边形ABCD是矩形,则阴影区域的面积等于(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.2D.$\frac{7}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率$e=\frac{{\sqrt{3}}}{2}$,过椭圆的左焦点F且倾斜角为30°的直线与圆x2+y2=b2相交所得弦的长度为1.
(I)求椭圆E的方程;
(Ⅱ)若动直线l交椭圆E于不同两点M(x1,y1),N(x2,y2),设$\overrightarrow{OP}$=(bx1,ay1),$\overrightarrow{OQ}$=((bx2,ay2),O为坐标原点.当以线段PQ为直径的圆恰好过点O时,求证:△MON的面积为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,三棱锥P-ABC中,△ABC是正三角形,PC⊥平面ABC,PC=AC=2,E为AC中点,EF⊥AP,垂足为F.
(I)求证:AP⊥FB;
(Ⅱ)求多面体PFBCE的体积.

查看答案和解析>>

同步练习册答案