分析 (Ⅰ)由椭圆离心率为$\frac{{\sqrt{2}}}{2}$,其短轴的下端点在抛物线x2=4y的准线上,列出方程组求出a,b,由此能求出椭圆C1的方程.
(Ⅱ)①设M(2,t),则C2的方程为(x-1)2+(y-$\frac{t}{2}$)2=1+$\frac{{t}^{2}}{4}$,由此利用圆的性质结合已知条件能求出圆C2的方程.
②由①知PQ方程为2x+ty-2=0,(t≠0),代入椭圆方程得(8+t2)x2-16x+8-2t2=0,t≠0,由此利用根的判断式、韦达定理、弦长公式、分类讨论思想,能求出λ的取值范围.
解答 解:(Ⅰ)∵椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,其短轴的下端点在抛物线x2=4y的准线上,
∴$\left\{\begin{array}{l}{b=1}\\{e=\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=$\sqrt{2}$,b=c=1,
∴椭圆C1的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$.
(Ⅱ)①由(Ⅰ)知F(1,0),设M(2,t),则C2的圆心坐标为(1,$\frac{t}{2}$),
C2的方程为(x-1)2+(y-$\frac{t}{2}$)2=1+$\frac{{t}^{2}}{4}$,
直线PQ方程为y=-$\frac{2}{t}$(x-1),(t≠0),即2x+ty-2=0,(t≠0)
又圆C2的半径r=$\sqrt{1+\frac{{t}^{2}}{4}}$=$\frac{1}{2}\sqrt{{t}^{2}+4}$,
由($\frac{|PQ|}{2}$)2+d2=r2,得($\frac{\sqrt{6}}{2}$)2+$\frac{1}{4}(\frac{{t}^{2}}{\sqrt{{t}^{2}+4}})^{2}$=$\frac{1}{4}({t}^{2}+4)$,
解得t2=4,∴t=±2,
∴圆C2的方程为:(x-1)2+(y-1)2=2或(x-1)2+(y+1)2=2.
②由①知PQ方程为2x+ty-2=0,(t≠0),
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{2x+ty-2=0}\end{array}\right.$,得(8+t2)x2-16x+8-2t2=0,t≠0,
则△=(-16)2-4(8+t2)(8-2t2)=8(t4+4t2)>0,
${x}_{1}+{x}_{2}=\frac{16}{8+{t}^{2}}$,${x}_{1}{x}_{2}=\frac{8-2{t}^{2}}{8+{t}^{2}}$,
|AB|=$\sqrt{[1+(\frac{2}{t})^{2}][({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{\frac{{t}^{2}+4}{{t}^{2}}×\frac{1{6}^{2}-4(8+{t}^{2})(8-2{t}^{2})}{({t}^{2}+8)}}$=2$\sqrt{2}$×$\frac{{t}^{2}+4}{{t}^{2}+8}$,
∴${S}_{2}=\frac{1}{2}×|OM|×|AB|$=$\frac{1}{2}\sqrt{{t}^{2}+4}×2\sqrt{2}×\frac{{t}^{2}+4}{{t}^{2}+8}$=$\sqrt{2}×\frac{\sqrt{({t}^{2}+4)^{3}}}{{t}^{2}+8}$,
S1=πr2=$\frac{π}{4}({t}^{2}+4)$,
∵S1=λS2,
∴$λ=\frac{{S}_{1}}{{S}_{2}}$=$\frac{\frac{π}{4}({t}^{2}+4)}{\sqrt{2}×\frac{({t}^{2}+4)\sqrt{{t}^{2}+4}}{{t}^{2}+8}}$=$\frac{π}{4\sqrt{2}}×\frac{{t}^{2}+8}{\sqrt{{t}^{2}+4}}$,
当t=0时,PQ的方程为x=1,|AB|=$\sqrt{2}$,|OM|=2,
${S}_{2}=\frac{1}{2}$|OM|×|AB|=$\sqrt{2}$,${S}_{1}=π(\frac{1}{2}|OM|)^{2}$=π,
∴$λ=\frac{{S}_{1}}{{S}_{2}}=\frac{π}{\sqrt{2}}=\frac{\sqrt{2}}{2}π$.
∵S1=λS2,
∴$λ=\frac{{S}_{1}}{{S}_{2}}$=$\frac{π×\frac{{t}^{2}+1}{{t}^{2}}}{2\sqrt{2}×\frac{({t}^{2}+1)\sqrt{{t}^{2}+1}}{|t|×(2{t}^{2}+1)}}$=$\frac{π}{2\sqrt{2}}×\frac{2{t}^{2}+1}{|t|×\sqrt{{t}^{2}+1}}$
=$\frac{π}{2\sqrt{2}}×\sqrt{\frac{(2{t}^{2}+1)^{2}}{{t}^{2}({t}^{2}+1)}}$=$\frac{π}{2\sqrt{2}}×\sqrt{4+\frac{1}{{t}^{2}({t}^{2}+1)}}$>$\frac{π}{2\sqrt{2}}×2$=$\frac{\sqrt{2}}{2}π$.
当直线PQ的斜率不存在时,PQ方程为x=1,|AB|=$\sqrt{2}$,|OM|=2,
∴S2=$\frac{1}{2}$|OM|×|AB|=$\sqrt{2}$,S1=$π(\frac{1}{2}|OM|)^{2}$=π,
$λ=\frac{{S}_{1}}{{S}_{2}}=\frac{π}{\sqrt{2}}=\frac{\sqrt{2}}{2}π$.
综上,$λ≥\frac{\sqrt{2}}{2}π$.
点评 本题考查椭圆方程、圆的方程的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意根的判断式、韦达定理、弦长公式、分类讨论思想的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 32 | B. | 31 | C. | 30 | D. | 29 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | -$\frac{5}{2}$ | C. | -$\frac{\sqrt{85}}{17}$ | D. | -$\frac{\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $2\sqrt{2}$ | C. | $4\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com