精英家教网 > 高中数学 > 题目详情
13.下列函数中,不是偶函数的是(  )
A.y=1-x2B.y=tanxC.y=cos2xD.y=3x+3-x

分析 根据函数奇偶性的定义进行判断即可.

解答 解:y=tanx在定义域内是奇函数,其余都是偶函数,
故选:B

点评 本题主要考查函数奇偶性的判断,要求熟练掌握常见函数的奇偶性,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.2sin2157.5°-1=-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x|y=lgx},B={x|x2-2x-3<0},则A∩B=(  )
A.(-1,0)B.(0,3)C.(-∞,0)∪(3,+∞)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,则下列判断错误的是(  )
A.A=2B.ω=2C.f(0)=1D.φ=$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知圆C的方程为(x-1)2+y2=1,P是椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上一点,过点P作图C的两条切线,切点为A,B,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值是2$\sqrt{2}$-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知椭圆$C:\frac{x^2}{4}+{y^2}=1,A({2,0})$,点P在椭圆C上,且OP⊥PA,其中O为坐标原点,则点P的坐标为(  )
A.$({\frac{2}{3},±\frac{{2\sqrt{2}}}{3}})$B.$({\frac{{2\sqrt{5}}}{3},±\frac{2}{3}})$C.$({-\frac{2}{3},±\frac{{2\sqrt{2}}}{3}})$D.$({-\frac{{2\sqrt{5}}}{3},±\frac{2}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.椭圆E1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1和椭圆E2:$\frac{{x}^{2}}{{{a}_{2}}^{2}}$+$\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1满足$\frac{{a}_{2}}{{a}_{1}}$=$\frac{{b}_{2}}{{b}_{1}}$=m(m>0),则称这两个椭圆相似,m称为其相似比.
(1)求经过点(2,$\sqrt{6}$),且与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1相似的椭圆方程;
(2)设过原点的一条射线L分别与(1)中的两个椭圆交于A、B两点(其中点A在线段OB上),求$|OA|+\frac{1}{|OB|}$的最大值和最小值;
(3)对于真命题“过原点的一条射线分别与相似比为2的两个椭圆C1:$\frac{{x}^{2}}{{2}^{2}}$+$\frac{{y}^{2}}{(\sqrt{2})^{2}}$=1和C2:$\frac{{x}^{2}}{{4}^{2}}$+$\frac{{y}^{2}}{(2\sqrt{2})^{2}}$=1交于A、B两点,P为线段AB上的一点,若|OA|,|OP|,|OB|成等比数列,则点P的轨迹方程为$\frac{{x}^{2}}{(2\sqrt{2})^{2}}$+$\frac{{y}^{2}}{{2}^{2}}$=1”.请用推广或类比的方法提出类似的一个真命题,不必证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,其短轴的下端点在抛物线x2=4y的准线上.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设O为坐标原点,M是直线l:x=2上的动点,F为椭圆的右焦点,过点F作OM的垂线与以为OM直径的圆C2相交于P,Q两点,与椭圆C1相交于A,B两点,如图所示.?
①若PQ=$\sqrt{6}$,求圆C2的方程;
②?设C2与四边形OAMB的面积分别为S1,S2,若S1=λS2,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.为了解某地区某种农产品的年产量x(单位:吨)对价格y(单位:千元/吨)和利润z的影响,对近五年该农产品的年产量和价格统计如表:
x12345
y7.06.55.53.82.2
(Ⅰ)求y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z取到最大值?(保留两位小数)
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

同步练习册答案