·ÖÎö £¨1£©Ö±½Ó¸ù¾Ý¶¨ÒåµÃµ½$\left\{\begin{array}{l}{\frac{2}{a}=\frac{\sqrt{2}}{b}}\\{\frac{4}{{a}^{2}}+\frac{6}{{b}^{2}}=1}\end{array}\right.$£¬½âµÃa£¬b£¬¼´¿ÉµÃµ½ÓëÒÑÖªÍÖÔ²ÏàËÆµÄÍÖÔ²·½³Ì£»
£¨2£©ÏȶÔÉäÏßÓëyÖáÖØºÏʱÇó³ö½áÂÛ£»ÔÙ¶ÔÉäÏß²»Óë×ø±êÖáÖØºÏʱ£¬ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ£¬½ö¿¼²éA¡¢BÔÚµÚÒ»ÏóÏÞµÄÇéÐΣ¬ÁªÁ¢Ö±ÏßÓëÁ½¸öÍÖÔ²·½³Ì·Ö±ðÇó³öÏ߶εij¤¶È£¬ÔÙ½áºÏº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉÇó³ö$|OA|+\frac{1}{|OB|}$µÄ×î´óÖµºÍ×îСֵ£»£¨ÕûÀí¹ý³ÌÐèСÐıÜÃâ³ö´í£©£®
£¨3£©·ÖÎö³öÃüÌâµÄ»ù±¾Ìõ¼þΪ£ºÍÖÔ²¡¢a=2£¬b=$\sqrt{2}$¡¢m=2¡¢µÈ±È£¬Àà±È×Åд£º¢ÙË«ÇúÏß»òÅ×ÎïÏߣ» ¢Úa£¬b»òp£» ¢ÛÏàËÆ±ÈΪm£»¢ÜµÈ±È£®
½â´ð ½â£º£¨1£©ÉèËùÇóµÄÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¬
ÔòÓÐ$\left\{\begin{array}{l}{\frac{2}{a}=\frac{\sqrt{2}}{b}}\\{\frac{4}{{a}^{2}}+\frac{6}{{b}^{2}}=1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{a}^{2}=16}\\{{b}^{2}=8}\end{array}\right.$£¬
¡àËùÒªÇóµÄÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{8}$=1£»
£¨2£©¢Ùµ±ÉäÏßÓëyÖáÖØºÏʱ£¬|OA|+$\frac{1}{|OB|}$=$\sqrt{2}$+$\frac{1}{2\sqrt{2}}$=$\frac{5\sqrt{2}}{4}$£»
¢Úµ±ÉäÏß²»ÓëyÖáÖØºÏʱ£¬ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ£¬ÎÒÃǽö¿¼²ìA¡¢BÔÚµÚÒ»ÏóÏÞµÄÇéÐΣ®
ÉèÆä·½³ÌΪy=kx£¨k¡Ý0£¬x£¾0£©£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉ$\left\{\begin{array}{l}y=kx\\ \frac{x^2}{4}+\frac{y^2}{2}=1\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x_1}^2=\frac{4}{{1+2{k^2}}}\\{y_1}^2=\frac{{4{k^2}}}{{1+2{k^2}}}\end{array}\right.$£¬ËùÒÔ$|OA|=\frac{{2\sqrt{{k^2}+1}}}{{\sqrt{1+2{k^2}}}}$£»
ÓÉ$\left\{\begin{array}{l}y=kx\\ \frac{x^2}{16}+\frac{y^2}{8}=1\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x_2}^2=\frac{16}{{1+2{k^2}}}\\{y_2}^2=\frac{{16{k^2}}}{{1+2{k^2}}}\end{array}\right.$ËùÒÔ$|OB|=\frac{{4\sqrt{{k^2}+1}}}{{\sqrt{1+2{k^2}}}}$£»
$|OA|+\frac{1}{|OB|}$=$\frac{{2\sqrt{{k^2}+1}}}{{\sqrt{1+2{k^2}}}}$+$\frac{{\sqrt{2{k^2}+1}}}{{4\sqrt{1+{k^2}}}}$£¬
Áî$t=\frac{{2\sqrt{{k^2}+1}}}{{\sqrt{1+2{k^2}}}}$£¬$\sqrt{2}£¼t¡Ü2$£¬
$|OA|+\frac{1}{|OB|}$=$t+\frac{1}{2t}$£¨$\sqrt{2}£¼t¡Ü2$£©ÔÚ$£¨{\sqrt{2}£¬2}]$ÉÏÊÇÔöº¯Êý£¬
¡à$f£¨\sqrt{2}£©£¼f£¨t£©¡Üf£¨2£©$£¬
¼´$\frac{5}{4}\sqrt{2}£¼|OA|+\frac{1}{|OB|}¡Ü\frac{9}{4}$£¬
ÓÉ¢Ù¢ÚÖª£¬|OA|+$\frac{1}{|OB|}$µÄ×î´óֵΪ$\frac{9}{4}$£¬$|OA|+\frac{1}{|OB|}$µÄ×îСֵΪ$\frac{{5\sqrt{2}}}{4}$£®
£¨3£©¹ýÔµãµÄÒ»ÌõÉäÏß·Ö±ðÓëÁ½ÌõË«ÇúÏßC1£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1ºÍC2£º$\frac{{x}^{2}}{£¨ma£©^{2}}$-$\frac{{y}^{2}}{£¨mb£©^{2}}$=1£¨m£¾0£©
½»ÓÚA¡¢BÁ½µã£¬PΪÏß¶ÎABÉϵÄÒ»µã£¬Èô|OA|¡¢|OP|¡¢|OB|³ÉµÈ±ÈÊýÁУ¬
ÔòµãPµÄ¹ì¼£·½³ÌΪ$\frac{{x}^{2}}{m{a}^{2}}$-$\frac{{y}^{2}}{m{b}^{2}}$=1£»
»ò¹ýÔµãµÄÒ»ÌõÉäÏß·Ö±ðÓëÁ½ÌõÅ×ÎïÏßC1£ºy2=2px£¨p£¾0£©ºÍC2£ºy2=2mpx£¨m£¾0£©
ÏཻÓÚÒìÓÚÔµãµÄA¡¢BÁ½µã£¬PΪÏß¶ÎABÉϵÄÒ»µã£¬
Èô|OA|¡¢|OP|¡¢|OB|³ÉµÈ±ÈÊýÁУ¬ÔòµãPµÄ¹ì¼£·½³ÌΪy2=2$\sqrt{m}$px£®
µãÆÀ ±¾Ìâ×ۺϿ¼²éÖ±ÏߺÍÍÖÔ²µÄλÖùØÏµ£¬ÄѶȽϴ󣬽âÌâʱҪ×ÐϸÉóÌ⣬עÒ⹫ʽµÄÁé»îÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | y=1-x2 | B£® | y=tanx | C£® | y=cos2x | D£® | y=3x+3-x |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 8 | B£® | 2+2$\sqrt{7}$ | C£® | 2+2$\sqrt{5}$ | D£® | 6 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\sqrt{5}$ | B£® | -$\frac{5}{2}$ | C£® | -$\frac{\sqrt{85}}{17}$ | D£® | -$\frac{\sqrt{5}}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4 | B£® | $2\sqrt{2}$ | C£® | $4\sqrt{2}$ | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com