5£®ÍÖÔ²E1£º$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1ºÍÍÖÔ²E2£º$\frac{{x}^{2}}{{{a}_{2}}^{2}}$+$\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1Âú×ã$\frac{{a}_{2}}{{a}_{1}}$=$\frac{{b}_{2}}{{b}_{1}}$=m£¨m£¾0£©£¬Ôò³ÆÕâÁ½¸öÍÖÔ²ÏàËÆ£¬m³ÆÎªÆäÏàËÆ±È£®
£¨1£©Çó¾­¹ýµã£¨2£¬$\sqrt{6}$£©£¬ÇÒÓëÍÖÔ²$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1ÏàËÆµÄÍÖÔ²·½³Ì£»
£¨2£©Éè¹ýÔ­µãµÄÒ»ÌõÉäÏßL·Ö±ðÓ루1£©ÖеÄÁ½¸öÍÖÔ²½»ÓÚA¡¢BÁ½µã£¨ÆäÖеãAÔÚÏß¶ÎOBÉÏ£©£¬Çó$|OA|+\frac{1}{|OB|}$µÄ×î´óÖµºÍ×îСֵ£»
£¨3£©¶ÔÓÚÕæÃüÌâ¡°¹ýÔ­µãµÄÒ»ÌõÉäÏß·Ö±ðÓëÏàËÆ±ÈΪ2µÄÁ½¸öÍÖÔ²C1£º$\frac{{x}^{2}}{{2}^{2}}$+$\frac{{y}^{2}}{£¨\sqrt{2}£©^{2}}$=1ºÍC2£º$\frac{{x}^{2}}{{4}^{2}}$+$\frac{{y}^{2}}{£¨2\sqrt{2}£©^{2}}$=1½»ÓÚA¡¢BÁ½µã£¬PΪÏß¶ÎABÉϵÄÒ»µã£¬Èô|OA|£¬|OP|£¬|OB|³ÉµÈ±ÈÊýÁУ¬ÔòµãPµÄ¹ì¼£·½³ÌΪ$\frac{{x}^{2}}{£¨2\sqrt{2}£©^{2}}$+$\frac{{y}^{2}}{{2}^{2}}$=1¡±£®ÇëÓÃÍÆ¹ã»òÀà±ÈµÄ·½·¨Ìá³öÀàËÆµÄÒ»¸öÕæÃüÌ⣬²»±ØÖ¤Ã÷£®

·ÖÎö £¨1£©Ö±½Ó¸ù¾Ý¶¨ÒåµÃµ½$\left\{\begin{array}{l}{\frac{2}{a}=\frac{\sqrt{2}}{b}}\\{\frac{4}{{a}^{2}}+\frac{6}{{b}^{2}}=1}\end{array}\right.$£¬½âµÃa£¬b£¬¼´¿ÉµÃµ½ÓëÒÑÖªÍÖÔ²ÏàËÆµÄÍÖÔ²·½³Ì£»
£¨2£©ÏȶÔÉäÏßÓëyÖáÖØºÏʱÇó³ö½áÂÛ£»ÔÙ¶ÔÉäÏß²»Óë×ø±êÖáÖØºÏʱ£¬ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ£¬½ö¿¼²éA¡¢BÔÚµÚÒ»ÏóÏÞµÄÇéÐΣ¬ÁªÁ¢Ö±ÏßÓëÁ½¸öÍÖÔ²·½³Ì·Ö±ðÇó³öÏ߶εij¤¶È£¬ÔÙ½áºÏº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉÇó³ö$|OA|+\frac{1}{|OB|}$µÄ×î´óÖµºÍ×îСֵ£»£¨ÕûÀí¹ý³ÌÐèСÐıÜÃâ³ö´í£©£®
£¨3£©·ÖÎö³öÃüÌâµÄ»ù±¾Ìõ¼þΪ£ºÍÖÔ²¡¢a=2£¬b=$\sqrt{2}$¡¢m=2¡¢µÈ±È£¬Àà±È×Åд£º¢ÙË«ÇúÏß»òÅ×ÎïÏߣ» ¢Úa£¬b»òp£» ¢ÛÏàËÆ±ÈΪm£»¢ÜµÈ±È£®

½â´ð ½â£º£¨1£©ÉèËùÇóµÄÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¬
ÔòÓÐ$\left\{\begin{array}{l}{\frac{2}{a}=\frac{\sqrt{2}}{b}}\\{\frac{4}{{a}^{2}}+\frac{6}{{b}^{2}}=1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{a}^{2}=16}\\{{b}^{2}=8}\end{array}\right.$£¬
¡àËùÒªÇóµÄÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{8}$=1£»                                
£¨2£©¢Ùµ±ÉäÏßÓëyÖáÖØºÏʱ£¬|OA|+$\frac{1}{|OB|}$=$\sqrt{2}$+$\frac{1}{2\sqrt{2}}$=$\frac{5\sqrt{2}}{4}$£»
¢Úµ±ÉäÏß²»ÓëyÖáÖØºÏʱ£¬ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ£¬ÎÒÃǽö¿¼²ìA¡¢BÔÚµÚÒ»ÏóÏÞµÄÇéÐΣ®
ÉèÆä·½³ÌΪy=kx£¨k¡Ý0£¬x£¾0£©£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉ$\left\{\begin{array}{l}y=kx\\ \frac{x^2}{4}+\frac{y^2}{2}=1\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x_1}^2=\frac{4}{{1+2{k^2}}}\\{y_1}^2=\frac{{4{k^2}}}{{1+2{k^2}}}\end{array}\right.$£¬ËùÒÔ$|OA|=\frac{{2\sqrt{{k^2}+1}}}{{\sqrt{1+2{k^2}}}}$£»

ÓÉ$\left\{\begin{array}{l}y=kx\\ \frac{x^2}{16}+\frac{y^2}{8}=1\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x_2}^2=\frac{16}{{1+2{k^2}}}\\{y_2}^2=\frac{{16{k^2}}}{{1+2{k^2}}}\end{array}\right.$ËùÒÔ$|OB|=\frac{{4\sqrt{{k^2}+1}}}{{\sqrt{1+2{k^2}}}}$£»
$|OA|+\frac{1}{|OB|}$=$\frac{{2\sqrt{{k^2}+1}}}{{\sqrt{1+2{k^2}}}}$+$\frac{{\sqrt{2{k^2}+1}}}{{4\sqrt{1+{k^2}}}}$£¬
Áî$t=\frac{{2\sqrt{{k^2}+1}}}{{\sqrt{1+2{k^2}}}}$£¬$\sqrt{2}£¼t¡Ü2$£¬
$|OA|+\frac{1}{|OB|}$=$t+\frac{1}{2t}$£¨$\sqrt{2}£¼t¡Ü2$£©ÔÚ$£¨{\sqrt{2}£¬2}]$ÉÏÊÇÔöº¯Êý£¬
¡à$f£¨\sqrt{2}£©£¼f£¨t£©¡Üf£¨2£©$£¬
¼´$\frac{5}{4}\sqrt{2}£¼|OA|+\frac{1}{|OB|}¡Ü\frac{9}{4}$£¬
ÓÉ¢Ù¢ÚÖª£¬|OA|+$\frac{1}{|OB|}$µÄ×î´óֵΪ$\frac{9}{4}$£¬$|OA|+\frac{1}{|OB|}$µÄ×îСֵΪ$\frac{{5\sqrt{2}}}{4}$£®                    
£¨3£©¹ýÔ­µãµÄÒ»ÌõÉäÏß·Ö±ðÓëÁ½ÌõË«ÇúÏßC1£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1ºÍC2£º$\frac{{x}^{2}}{£¨ma£©^{2}}$-$\frac{{y}^{2}}{£¨mb£©^{2}}$=1£¨m£¾0£©
½»ÓÚA¡¢BÁ½µã£¬PΪÏß¶ÎABÉϵÄÒ»µã£¬Èô|OA|¡¢|OP|¡¢|OB|³ÉµÈ±ÈÊýÁУ¬
ÔòµãPµÄ¹ì¼£·½³ÌΪ$\frac{{x}^{2}}{m{a}^{2}}$-$\frac{{y}^{2}}{m{b}^{2}}$=1£»
»ò¹ýÔ­µãµÄÒ»ÌõÉäÏß·Ö±ðÓëÁ½ÌõÅ×ÎïÏßC1£ºy2=2px£¨p£¾0£©ºÍC2£ºy2=2mpx£¨m£¾0£©
ÏཻÓÚÒìÓÚÔ­µãµÄA¡¢BÁ½µã£¬PΪÏß¶ÎABÉϵÄÒ»µã£¬
Èô|OA|¡¢|OP|¡¢|OB|³ÉµÈ±ÈÊýÁУ¬ÔòµãPµÄ¹ì¼£·½³ÌΪy2=2$\sqrt{m}$px£®

µãÆÀ ±¾Ìâ×ۺϿ¼²éÖ±ÏߺÍÍÖÔ²µÄλÖùØÏµ£¬ÄѶȽϴ󣬽âÌâʱҪ×ÐϸÉóÌ⣬עÒ⹫ʽµÄÁé»îÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨1£¬1£©£¬$\overrightarrow{b}$=£¨m£¬2£©£®$\overrightarrow{a}$¡Í£¨$\overrightarrow{a}$Ê®2$\overrightarrow{b}$£©£®$\overrightarrow{c}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ$\frac{3¦Ð}{4}$£¬$\overrightarrow{b}•\overrightarrow{c}$=-13£®
£¨1£©ÇóʵÊýmµÄÖµ£»
£¨2£©Çó|$\overrightarrow{c}$|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªF1¡¢F2ÊÇÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬PÊÇÍÖÔ²ÉÏÒ»µã£¨ÒìÓÚ×ó¡¢ÓÒ¶¥µã£©£¬µãEÊÇ¡÷PF1F2µÄÄÚÐÄ£¬Èô3|PE|2=|PF1|•|PF2|£¬ÔòÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÏÂÁк¯ÊýÖУ¬²»ÊÇżº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®y=1-x2B£®y=tanxC£®y=cos2xD£®y=3x+3-x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Ò»¸ö³¤·½Ìåµ×ÃæÎªÕý·½ÐÎÇұ߳¤Îª4£¬¸ßΪh£¬ÈôÕâ¸ö³¤·½ÌåÄÜ×°ÏÂ8¸ö°ë¾¶Îª1µÄСÇòºÍÒ»¸ö°ë¾¶Îª2µÄ´óÇò£¬ÔòhµÄ×îСֵΪ£¨¡¡¡¡£©
A£®8B£®2+2$\sqrt{7}$C£®2+2$\sqrt{5}$D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨1£¬¦Ë£©£¬$\overrightarrow{b}$=£¨2£¬1£©£¬Èô2$\overrightarrow{a}$+$\overrightarrow{b}$Óë$\overrightarrow{c}$=£¨1£¬-2£©¹²Ïߣ¬Ôò$\overrightarrow{a}$ÔÚ$\overrightarrow{b}$·½ÏòÉϵÄͶӰÊÇ£¨¡¡¡¡£©
A£®$\sqrt{5}$B£®-$\frac{5}{2}$C£®-$\frac{\sqrt{85}}{17}$D£®-$\frac{\sqrt{5}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÊµÊýx£¬yÂú×ã$\left\{\begin{array}{l}x-y+1¡Ý0\\ x+y-3¡Ü0\\ x+3y-3¡Ý0\end{array}\right.$£¬Ôòz=|x+y+1|µÄ×î´óֵΪ£¨¡¡¡¡£©
A£®4B£®$2\sqrt{2}$C£®$4\sqrt{2}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÓÐÇîÊýÁÐ{an}¹²ÓÐmÏm¡Ý3£¬m¡ÊN*£©£¬¶ÔÓÚÿ¸öi£¨i=1£¬2£¬3£¬¡­£¬m£©¾ùÓÐai¡Ê{1£¬2£¬3}£¬ÇÒÊ×Ïîa1ÓëÄ©Ïîam²»ÏàµÈ£¬Í¬Ê±ÈÎÒâÏàÁÚÁ½Ïî²»ÏàµÈ£®¼Ç·ûºÏÉÏÊöÌõ¼þµÄËùÓÐÊýÁÐ{an}µÄ¸öÊýΪf£¨m£©£®
£¨1£©Ð´³öf£¨3£©£¬f£¨4£©µÄÖµ£»
£¨2£©Ð´³öf£¨m£©µÄ±í´ïʽ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬${S_n}=3{a_n}-2£¨{n¡Ê{N^*}}£©$£¬ÔòÊýÁÐ{an}µÄͨÏʽΪan=$£¨\frac{3}{2}£©^{n-1}$£¨n¡ÊN*£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸