精英家教网 > 高中数学 > 题目详情
6.过抛物线y=x2的焦点F作一直线交抛物线于M(x1,y1)、N(x2,y2)两点,如果y1+y2=1,则线段MN的中点到准线的距离等于(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

分析 由题意,y1+y2=1,则线段MN的中点纵坐标为$\frac{1}{2}$,即可求出线段MN的中点到准线的距离.

解答 解:由题意,y1+y2=1,则线段MN的中点纵坐标为$\frac{1}{2}$,
∴线段MN的中点到准线的距离等于$\frac{1}{4}+\frac{1}{2}$=$\frac{3}{4}$,
故选C.

点评 本题主要考查抛物线的基本性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设集合A={1,2,3,4,5},集合B={1,2,3},在集合A中任取一个数为x,在集合B中任取一个数为y,组成点(x,y).
(Ⅰ)写出所有的基本事件;
(Ⅱ)求事件“x+y为偶数”的概率;
(Ⅲ)求事件“xy为奇数”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个几何体的三视图如图所示,则三视图表示的几何体的体积最大为(  )
A.$\frac{40}{3}$B.40C.$\frac{20}{3}$D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,点E,F分别为BC、PD的中点,若PA=AD=4,AB=2.
(1)求证:EF∥平面PAB.
(2)求直线EF与平面PCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率e=$\frac{1}{2}$,且过点$M(1,\frac{3}{2})$.
(1)求椭圆C的方程;
(2)椭圆C长轴两端点分别为A,B,点P为椭圆上异于A,B的动点,定直线x=4与直线PA,PB分别交于M,N两点,又E(7,0),求证:直线EM⊥直线EN.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.记Sk=1k+2k+3k+…+nk,当k=1,2,3…时,观察下列等式:
S1=$\frac{1}{2}{n}^{2}+\frac{1}{2}n$,S2=$\frac{1}{3}{n}^{3}+\frac{1}{2}{n}^{2}+\frac{1}{6}n$,S3=$\frac{1}{4}{n}^{4}+\frac{1}{2}{n}^{3}+\frac{1}{4}{n}^{2}$,
S${\;}_{4}=\frac{1}{5}{n}^{5}+\frac{1}{2}{n}^{4}+\frac{1}{3}{n}^{3}-\frac{1}{30}n$,S5=$\frac{1}{6}{n}^{6}+A{n}^{5}+B{n}^{4}-\frac{1}{12}{n}^{2}$,…,
可以推测A-B=$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=xlnx,g(x)=x3+bx2-x+2
(Ⅰ)如果函数g(x)的单调递减区间为(-$\frac{1}{3}$,1),求函数g(x)的解析式;
(Ⅱ)若不等式f(x)≤$\frac{g′(x)}{2}$+1恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C:(x-a)2+(y-2)2=4(a∈R)及直线l:x-y+3=0.当直线l被圆C截得的弦长为2$\sqrt{3}$时,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知13+23+33+…+n3=$\frac{{{n^2}{{(an+b)}^2}}}{4}$对一切n∈N+都成立,那么a,b的可能值为(  )
A.a=b=1B.a=1,b=2C.a=2,b=1D.不存在这样的a,b

查看答案和解析>>

同步练习册答案