精英家教网 > 高中数学 > 题目详情
14.如图,在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,点E,F分别为BC、PD的中点,若PA=AD=4,AB=2.
(1)求证:EF∥平面PAB.
(2)求直线EF与平面PCD所成的角.

分析 (1)以A为原点,分别以AB、AD、AP所在直线为x轴、y轴、z轴,建立空间直角坐标系,$\overrightarrow{EF}$=(-2,0,2),平面PAB的一个法向量是$\overrightarrow{AD}$=(0,4,0),证明$\overrightarrow{EF}⊥\overrightarrow{AD}$,即可证明EF∥平面PAB;
(2)求出平面PCD的一个法向量,即可求直线EF与平面PCD所成的角.

解答 (1)证明:依题意,以A为原点,分别以AB、AD、AP所在
直线为x轴、y轴、z轴,建立空间直角坐标系如图,则A(0,0,0),B(2,0,0),P(0,0,4),D(0,4,0)C(2,4,0),E(2,2,0),F(0,2,2)------------------(2分)
∴$\overrightarrow{EF}$=(-2,0,2),平面PAB的一个法向量是$\overrightarrow{AD}$=(0,4,0)------(4分)
∵$\overrightarrow{EF}•\overrightarrow{AD}$=0,
∴$\overrightarrow{EF}⊥\overrightarrow{AD}$,
故 EF∥平面PAB-----------------------------------------------(6分)
(2)∵$\overrightarrow{DC}$=(2,0,0),$\overrightarrow{DP}$=(0,-4,4)(7分)
设平面PCD的一个法向量为$\overrightarrow{m}$=(x,y,z)
则$\left\{\begin{array}{l}{2x=0}\\{-4y+4z=0}\end{array}\right.$得$\left\{\begin{array}{l}x=0\\ y=z\end{array}\right.$∴令z=1,得$\overrightarrow{m}$=(0,1,1)-----------------------------------(9分)
而$\overrightarrow{EF}$=(-2,0,2),
∴cos<$\overrightarrow{EF}$,$\overrightarrow{m}$>=$\frac{0+0+2}{\sqrt{4+4}•\sqrt{1+1}}$=$\frac{1}{2}$,
∴<$\overrightarrow{EF}$,$\overrightarrow{m}$>=60°----------------------------------(11分)
所以EF与平面PCD所成的角是90°-60°=30°----------------------------(12分)

点评 本题考查线面平行的证明,考查线面角,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.歌德巴赫(Goldbach.C.德.1690-1764)曾研究过“所有形如$\frac{1}{{{{(n+1)}^{m+1}}}}$(m,n为正整数)的分数之和”问题.为了便于表述,引入记号:$\sum_{n=1}^∞{\sum_{m=1}^∞{\frac{1}{{{{(n+1)}^{m+1}}}}}}$=$(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+…)+(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+…)+…+(\frac{1}{{{{(n+1)}^2}}}+\frac{1}{{{{(n+1)}^3}}}+\frac{1}{{{{(n+1)}^4}}}+…)+…$
写出你对此问题的研究结论:$\sum_{n=1}^∞{\sum_{m=1}^∞{\frac{1}{{{{(n+1)}^{m+1}}}}=1}}$(用数学符号表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\frac{1}{3}{x^3}+({a-6})x$,g(x)=-x2+lnx-1
(Ⅰ)若a=2,求f(x)的单调区间;
(Ⅱ)对?x1,x2∈[1,+∞),都有f(x1)>g(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,平面ABCD⊥平面ABE,其中ABCD为矩形,△ABE为直角三角形,∠AEB=90°,AB=2AD=2AE=2.
(Ⅰ)求证:平面ACE⊥平面BCE;
(Ⅱ)求直线CD与平面ACE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.把数列$\left\{{\frac{1}{{{n^2}+n}}}\right\}$依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,…,按此规律下去,即$({\frac{1}{2}}),({\frac{1}{6},\frac{1}{12}}),({\frac{1}{20},\frac{1}{30},\frac{1}{42}})$,…,则第6个括号内各数字之和为$\frac{3}{176}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在古希腊,毕达哥拉斯学派把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的石子可以排成一个正三角形(如图),则第10个三角形数是(  )
A.35B.36C.45D.55

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.过抛物线y=x2的焦点F作一直线交抛物线于M(x1,y1)、N(x2,y2)两点,如果y1+y2=1,则线段MN的中点到准线的距离等于(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在直角梯形ABCD中,AB∥CD,∠DAB=90°,AD=CD=$\frac{1}{2}$AB=1,直角梯形ABEF可以通过直角梯形ABCD以直线AB为轴旋转得到,且平面ABEF⊥平面ABCD
(Ⅰ)求证:FA⊥BC
(Ⅱ)求直线BD与平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)=$\frac{x}{x+1}$,x≥0,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,则f2016(x)的表达式为${f_{2016}}(x)=\frac{x}{1+2016x}$.

查看答案和解析>>

同步练习册答案