精英家教网 > 高中数学 > 题目详情
5.已知函数$f(x)=\frac{1}{3}{x^3}+({a-6})x$,g(x)=-x2+lnx-1
(Ⅰ)若a=2,求f(x)的单调区间;
(Ⅱ)对?x1,x2∈[1,+∞),都有f(x1)>g(x2),求实数a的取值范围.

分析 (1)利用导数列表判断
(2)利用导数求解函数最大值,最小值,转化为f(x)的最小值,g(x)的最大值比较即可,得出即$\frac{1}{3}{x^3}+(a-6)x>-2a>-\frac{1}{3}{x^2}-\frac{2}{x}+6$恒成立.

解答 解:(1)$f(x)=\frac{1}{3}{x^3}-4x{f^/}(x)={x^2}-4$
令f′(x)=0得x1=-2x2=2

x(-∞,-2)(-2,2)(2,+∞)
f′(x)+-+
 f(x)
∴f(x)的单调递增区间为(-∞,-2)和(2,+∞),递减区间为(-2,2)
(2)${g^/}(x)=-2x+\frac{1}{x}$若x∈[1,+∞)则g′(x)<0
∴g(x)在[1,+∞)上单调递减,g(x)的最大值为-2  
要使f(x1)>g(x2)成立
即f(x)>-2,x∈[1,+∞)恒成立     
即$\frac{1}{3}{x^3}+(a-6)x>-2a>-\frac{1}{3}{x^2}-\frac{2}{x}+6$恒成立
令$h(x)=-\frac{1}{3}{x^2}-\frac{2}{x}+6$求得它在[1,+∞)的最大值为$6-\root{3}{9}$
∴$a>6-\root{3}{9}$

点评 本题综合考查了运用导数解决函数单调性,的问题,关键判断最值,得出恒成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知f(x)=$\left\{\begin{array}{l}-{x^2}+3x(x<2)\\ 2x-1(x≥2)\end{array}$,则f(-1)+f(4)的值为(  )
A.-7B.-8C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设集合A={1,2,3,4,5},集合B={1,2,3},在集合A中任取一个数为x,在集合B中任取一个数为y,组成点(x,y).
(Ⅰ)写出所有的基本事件;
(Ⅱ)求事件“x+y为偶数”的概率;
(Ⅲ)求事件“xy为奇数”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2-$\frac{ax+2}{{e}^{x}}$(a∈R)
(1)讨论函数f(x)的单调性;
(2)当x≥0时,f(x)≥0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,正△ABC中,点D在边AC上,E,G在边AB上,且AB=3AG=6,AD=λAC,AE=(1-λ)AB,(0<λ<1),BD,CE相交于点F
(1)证明:A,E,F,D四点共圆;
(2)当点E是BG中点时,求线段FG的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=(2ax-lnx)x有两个极值点,则实数a的取值范围是(  )
A.(0,$\frac{1}{4}$)B.(0,$\frac{1}{2}$)C.(0,1)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个几何体的三视图如图所示,则三视图表示的几何体的体积最大为(  )
A.$\frac{40}{3}$B.40C.$\frac{20}{3}$D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,点E,F分别为BC、PD的中点,若PA=AD=4,AB=2.
(1)求证:EF∥平面PAB.
(2)求直线EF与平面PCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C:(x-a)2+(y-2)2=4(a∈R)及直线l:x-y+3=0.当直线l被圆C截得的弦长为2$\sqrt{3}$时,求a的值.

查看答案和解析>>

同步练习册答案