精英家教网 > 高中数学 > 题目详情
15.已知圆C:(x-a)2+(y-2)2=4(a∈R)及直线l:x-y+3=0.当直线l被圆C截得的弦长为2$\sqrt{3}$时,求a的值.

分析 利用弦长公式可得弦心距d=1,再由点到直线的距离公式可得d=$\frac{|a-2+3|}{\sqrt{2}}$,由此求得a的值.

解答 解:由题意圆C:(x-a)2+(y-2)2=4的圆心坐标是(a,2),半径是2.
利用弦长公式可得弦心距d=$\sqrt{4-3}$=1,
再由点到直线的距离公式可得d=$\frac{|a-2+3|}{\sqrt{2}}$,
∴1=$\frac{|a-2+3|}{\sqrt{2}}$,解得a=-1$±\sqrt{2}$.

点评 本题主要考查直线和圆相交的性质,点到直线的距离公式、弦长公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\frac{1}{3}{x^3}+({a-6})x$,g(x)=-x2+lnx-1
(Ⅰ)若a=2,求f(x)的单调区间;
(Ⅱ)对?x1,x2∈[1,+∞),都有f(x1)>g(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.过抛物线y=x2的焦点F作一直线交抛物线于M(x1,y1)、N(x2,y2)两点,如果y1+y2=1,则线段MN的中点到准线的距离等于(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在直角梯形ABCD中,AB∥CD,∠DAB=90°,AD=CD=$\frac{1}{2}$AB=1,直角梯形ABEF可以通过直角梯形ABCD以直线AB为轴旋转得到,且平面ABEF⊥平面ABCD
(Ⅰ)求证:FA⊥BC
(Ⅱ)求直线BD与平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax3+bx2+cx+d为奇函数,且在x=-1处取得最大值2
(1)求f(x)的解析式;
(2)过点A(1,t)(t≠-2)可作函数f(x)图象的三条切线,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知定义在R上的可导函数f(x)图象既关于直线x=1对称,又关于直线x=5对称,且当x∈[1,5]时,有f′(x)>3f(x),则下列各式成立的是(  )
A.e3f(-14)<f(-5),e3f(-10)<f(-19)B.e3f(-14)>f(-5),e3f(-10)>f(-19)
C.e3f(-14)<f(-5),e3f(-10)>f(-19)D.e3f(-14)>f(-4),e3f(-10)<f(-19)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=-$\frac{1}{3}$x3+x2+ax+b在x=3取得极值为4,则f(x)在区间[-2,1]上的最大值为(  )
A.-1B.0C.-$\frac{4}{3}$D.-$\frac{13}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)=$\frac{x}{x+1}$,x≥0,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,则f2016(x)的表达式为${f_{2016}}(x)=\frac{x}{1+2016x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某同学在独立完成课本上的例题:“求证:$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$”后,又进行了探究,发现下面的不等式均成立.$\sqrt{0}+\sqrt{10}<2\sqrt{5}$
$\sqrt{1.3}+\sqrt{8.7}<2\sqrt{5}$
$\sqrt{2}+\sqrt{8}<2\sqrt{5}$
$\sqrt{4.6}+\sqrt{5.4}<2\sqrt{5}$
$\sqrt{5}+\sqrt{5}≤2\sqrt{5}$
经过认真地分析、尝试,该同学归纳出一个一般性的不等式:$\sqrt{x}$+$\sqrt{y}$≤2$\sqrt{\frac{x+y}{2}}$(x,y∈[0,+∞)).请用合适的方法证明该不等式成立.

查看答案和解析>>

同步练习册答案