精英家教网 > 高中数学 > 题目详情
学校餐厅每天供应500名学生用餐,每星期一有A,B两种菜可供选择.调查表明,凡是在这星期一选A菜的,下星期一会有
1
5
改选B菜;而选B菜的,下星期一会有
3
10
改选A菜.用an,bn分别表示第n个星期选A的人数和选B的人数.
(1)试用an+1(n∈N*,n≥2)表示an,判断数列{an-300}是否成等比数列并说明理由;
(2)若第一个星期一选A种菜的有200人,那么第10个星期一选A种菜的大约有多少人?
考点:数列的应用
专题:应用题,等差数列与等比数列
分析:(1)根据这星期一选A菜的,下星期一会有
1
5
改选B菜;而选B菜的,下星期一会有
3
10
改选A菜,可得an+1=
1
2
an+250,再利用等比数列的定义判断数列{an-300}是否成等比数列;
(2)利用{an-300}是以a1-300为首项,
1
2
为公比的等比数列,即可求出第10个星期一选A种菜的人数.
解答: 解:(1)由题知,对n∈N*有bn=500-an
∴当n∈N*且n≥2时,an=
4
5
an-1+
3
10
(500-an-1)⇒an=
1
2
an-1+250⇒an-300=
1
2
(an-1-300)

∴an+1=
1
2
an+250,
∴当a1=300时,{an-300}不是等比数列;
  当a1≠300时,{an-300}是以a1-300为首项,
1
2
为公比的等比数列.
(2)当a1=200时,an-300=(
1
2
)n-1(a1-300)⇒an=300-
100
2n-1
a10=300-
100
29
≈300

∴第10个星期一选A种菜的大约有300人.
点评:本题考查数列知识在生产实际中的应用,理清题设中的数量关系,合理地运用数列知识进行求解是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行图(一、12)所示的程序框图,则输出S=(  )
A、112B、55
C、110D、114

查看答案和解析>>

科目:高中数学 来源: 题型:

等边三角形ABC的边长为3,点D、E分别是边AB、AC上的点,且满足
AD
DB
=
CE
EA
=
1
2
(如图1).将△ADE沿DE折起到△A1DE的位置,使二面角A1-DE-B成直二面角,连结A1B、A1C(如图1).
(Ⅰ)求证:A1D⊥平面BCED:
(Ⅱ)在线段BC上是否存在点P,使直线PA1与平面A1BD所成的角的正弦值为
3
2
?若存在,求出PB的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在斜三棱柱ABC-A1B1C1中,点O是A1C1的中点,AO⊥平面A1B1C1.已知∠BCA=90°,AA1=AC=BC=2.
(1)求证:AB1⊥AlC;
(2)求点C到平面AA1B1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,AB⊥AC,PA=PB=PC,D,E分别是AC,BC的中点,AB=2
3
,AC=2,PD=2
2
,Q为线段PE上不同于端点的一动点.
(Ⅰ)求证:AC⊥DQ;
(Ⅱ)若二面角B-AQ-E的大小为60°,求
QE
PE
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥平面ABC,AP=AB=2
3
,AC=4,D为PC中点,E为PB上一点,且BC∥平面ADE.
(Ⅰ)证明:E为PB的中点;
(Ⅱ)若PB⊥AD,求直线AC与平面ADE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆C1:x2+y2+2x+8y-8=0与圆C2:x2+y2-4x-4y-2=0的公共弦长等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设ave{a,b,c}表示实数a,b,c的平均数,max{a,b,c}表示实数a,b,c的最大值.设A=ave{-
1
2
x+2,x,
1
2
x+1},M=max{-
1
2
x+2,x,
1
2
x+1},若M=3|A-1|,则x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+a
(x-1)2
,(x>1)
(1)当a=1时,求曲线y=f(x)在点P(2,f(2))处的切线方程;
(2)求函数f(x)的单调区间;
(3)函数f(x)在区间[3,+∞)上是否存在最小值?若存在,求出最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案