精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中,PA⊥平面ABC,AP=AB=2
3
,AC=4,D为PC中点,E为PB上一点,且BC∥平面ADE.
(Ⅰ)证明:E为PB的中点;
(Ⅱ)若PB⊥AD,求直线AC与平面ADE所成角的正弦值.
考点:直线与平面所成的角
专题:空间角
分析:(Ⅰ)由已知条件推导出BC∥DE,再由D为PC中点,求出E为PB的中点.
(Ⅱ)由已知条件推导出平面PBC⊥平面ADE,从而得到BC⊥PB.过C作CH⊥ED于H,推导出∠CAH是直线AC与平面ADE所成的角.由此能求出直线AC与平面ADE所成角的正弦值.
解答: (Ⅰ)证明:∵BC∥平面ADE,BC?平面PBC,
平面PBC∩平面ADE=DE,
∴BC∥DE.
∵D为PC中点,
∴E为PB的中点.
(Ⅱ)解:∵AP=AB,E为PB的中点,∴AE⊥PB,
又PB⊥AD,∴PB⊥平面ADE,
得DE⊥PB,且平面PBC⊥平面ADE.
由BC∥DE,得BC⊥PB.
过C作CH⊥ED于H,由平面PBC⊥平面ADE,∴CH⊥平面ADE.
∴∠CAH是直线AC与平面ADE所成的角.
∵BC∥DE,BC⊥PB,∴CH=BE=
1
2
PB=
6

sin∠CAH=
CH
AC
=
6
4
点评:本题考查线段中点的证明,考查直线与平面所成角的正弦值的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图程序执行后输出的结果是S=(  )
A、3B、6C、10D、15

查看答案和解析>>

科目:高中数学 来源: 题型:

运行如图所示的程序框图,当输入实数x的值为-1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7.
(Ⅰ)求实数a,b的值;并写出函数f(x)的解析式;
(Ⅱ)求满足不等式f(x)>1的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过A(5,2),B(3-
2
,2-
2
),且圆心C在直线x=3上.
(1)求圆C的方程;
(2)求过D(0,1)点且与圆C相切的两条切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

学校餐厅每天供应500名学生用餐,每星期一有A,B两种菜可供选择.调查表明,凡是在这星期一选A菜的,下星期一会有
1
5
改选B菜;而选B菜的,下星期一会有
3
10
改选A菜.用an,bn分别表示第n个星期选A的人数和选B的人数.
(1)试用an+1(n∈N*,n≥2)表示an,判断数列{an-300}是否成等比数列并说明理由;
(2)若第一个星期一选A种菜的有200人,那么第10个星期一选A种菜的大约有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

由于国家重点扶持节能环保产业,某种节能产品的市场销售回暖.某经销商销售这种产品,年初与生产厂家签订进货合同,约定一年内进价为0.1万元/台.一年后,实际月销售量P(台)与月次x之间存在如图所示函数关系(4月到12月近似符合二次函数关系).
(1)写出P关于x的函数关系式;
(2)如果每台售价0.15万元,试求一年中利润最低的月份,并表示出最低利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
OA
|=1,|
OB
|=2,∠AOB=
3
OC
=
1
2
OA
+
1
4
OB
,则
OA
OC
的夹角大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的程序框图中,输入f0(x)=cosx,则输出的是(  )
A、sinxB、-sinx
C、cosxD、-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:

对于数列{an},把a1作为新数列{bn}的第一项,把ai或-ai(i=2,3,4,…,n)作为新数列{bn}的第i项,数列{bn}称为数列{an}的一个生成数列.例如,数列1,2,3,4,5的一个生成数列是1,-2,-3,4,5.已知数列{bn}为数列{
1
2n
}(n∈N*)的生成数列,Sn为数列{bn}的前n项和.
(Ⅰ)写出S3的所有可能值;
(Ⅱ)若生成数列{bn}满足S3n=
1
7
(1-
1
8n
),求数列{bn}的通项公式;
(Ⅲ)证明:对于给定的n∈N*,Sn的所有可能值组成的集合为{x|x=
2k-1
2n
,k∈N*,k≤2n-1}.

查看答案和解析>>

同步练习册答案