精英家教网 > 高中数学 > 题目详情
5.在四棱锥P-ABCD中,底面ABCD是梯形,BC∥AD,AD=2BC,AC交BD于点O,试问在棱PA上是否存在点E,使得直线PC∥平面EBD?若存在,求PE:PA的值,并证明你的结论.若不存在,请说明理由.

分析 取AD中点F,AF=FD,连接CF,BD,CF交BD于Q,由已知条播是到四边形ABCF是平行四边形,四边形BCDF平行四边形,由此能推导出存在PC∥平面EBD,且必有PC∥EO,并能求出PE:PA的值.

解答 解:存在PC∥平面EBD.
证明如下:取AD中点F,AF=FD,连接CF,BD,CF交BD于Q,
由已知得AD=2BC=2AF=2FD,故AF=FD=BC,
∵BC∥AF,BC∥DF,
∴四边形ABCF是平行四边形,四边形BCDF平行四边形,
∴AB=2CQ,
又∵CQ∥AB,∴$\frac{AO}{CO}$=$\frac{AB}{QC}$,
∴$\frac{AO}{OC}=\frac{2}{1},\frac{CO}{CA}=\frac{1}{3}$,
∴存在PC∥平面EBD,且必有PC∥EO,
∴PE:PA=CO:CA=1:3.

点评 本题考查线面平行判断与证明,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.根据下表,绘制网络图.
工作代码紧前工作紧后工作工期/时
ACG2
BD3
CA、D、F4
DCB2
EF4
FCE2
GA5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在坐标平面内,对任意非零实数m,不在抛物线y=mx2+(2m+1)x-(3m+2)上且在直线y=-x+1上的点的坐标为(1,0),(-3,4),($\frac{3}{2}$,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=3x2+6x-12的单调增区间为[-1,+∞),单调减区间为(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若a,b∈R,比较a2+2b2 与b(a+b)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax2+x-2,g(x)=-x+1+4lnx,h(x)=f(x)-g(x).
(1)当a=1时,证明函数h(x)只有一个零点;
(2)若a<0,已知函数h(x)在定义域内没有极值点,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知正三棱锥P-ABC中,M,N分别是AB,AP的中点,若MN⊥CN,则此正三棱锥的侧面积与底面ABC的面积之比为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图所示,PA⊥平面ABC,AC⊥BC,AB=2,BC=$\sqrt{2}$,PB=$\sqrt{6}$,则二面角P-BC-A的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a,b∈R,求证:$\frac{{6}^{a}}{3{6}^{a+1}+1}$≤$\frac{5}{6}$-b+$\frac{{b}^{2}}{3}$.

查看答案和解析>>

同步练习册答案