精英家教网 > 高中数学 > 题目详情

用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”则假设的内容是( )

A.a,b都能被5整除 B.a,b都不能被5整除

C.a,b不能被5整除 D.a,b有1个不能被5整除

 

B

【解析】

试题分析:反设是一种对立性假设,即想证明一个命题成立时,可以证明其否定不成立,由此得出此命题是成立的.

【解析】
由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.

命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”.

故应选B.

练习册系列答案
相关习题

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.2数学归纳法证明不等式举例(解析版) 题型:选择题

用数学归纳法证明不等式成立,起始值至少应取为( )

A.7 B.8 C.9 D.10

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.1二维形式柯西不等式练习卷(解析版) 题型:填空题

(2014•陕西三模)已知a、b、c、d均为正数,且a2+b2=4,cd=1,则(a2c2+b2d2)(b2c2+a2d2)的最小值为 .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.1二维形式柯西不等式练习卷(解析版) 题型:选择题

(2014•孝感二模)已知x,y,z均为正数,且x+y+z=2,则++的最大值是( )

A.2 B.2 C.2 D.?3

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.3反证法与放缩法练习卷(解析版) 题型:选择题

用反证法证明:“方程ax2+bx+c=0,且a,b,c都是奇数,则方程没有整数根”正确的假设是方程存在实数根x0为( )

A.整数 B.奇数或偶数 C.正整数或负整数 D.自然数或负整数

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.3反证法与放缩法练习卷(解析版) 题型:选择题

用反证法证明命题“若a2+b2=0,则a、b全为0(a、b∈R)”,其反设正确的是( )

A.a、b至少有一个不为0 B.a、b至少有一个为0

C.a、b全不为0 D.a、b中只有一个为0

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.2综合法与分析法练习卷(解析版) 题型:填空题

下列表述:

①综合法是执因导果法;

②综合法是顺推法;

③分析法是执果索因法;

④分析法是间接证法;

⑤反证法是逆推法.

正确的语句有是 (填序号).

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.1比较法练习卷(解析版) 题型:填空题

下列不等式的证明明过程:

①若a,b∈R,则 ②若x,y∈R,则

③若x∈R,则

④若a,b∈R,ab<0,则

其中正确的序号是 .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 1.2绝对值不等式练习卷(解析版) 题型:选择题

(2014•衡阳三模)设函数f(x)=|x2﹣2x﹣1|,若a>b>1,且f(a)=f(b),则ab﹣a﹣b的取值范围为( )

A.(﹣2,3) B.(﹣2,2) C.(1,2) D.(﹣1,1)

 

查看答案和解析>>

同步练习册答案