精英家教网 > 高中数学 > 题目详情

用反证法证明:“方程ax2+bx+c=0,且a,b,c都是奇数,则方程没有整数根”正确的假设是方程存在实数根x0为( )

A.整数 B.奇数或偶数 C.正整数或负整数 D.自然数或负整数

 

A

【解析】

试题分析:本题考查反证法的概念,逻辑用语,否命题与命题的否定的概念,逻辑词语的否定.根据反证法的步骤,假设是对原命题结论的否定,故只须对“方程没有整数根”写出否定即可.

【解析】
根据反证法的步骤,假设是对原命题结论的否定

“方程没有整数根”的否定“方程存在实数根x0为整数”.

即假设正确的是:方程存在实数根x0为整数.

故选A.

练习册系列答案
相关习题

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.2数学归纳法证明不等式举例(解析版) 题型:填空题

,则f(k+1)﹣f(k)= .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.2一般形式柯西不等式练习卷(解析版) 题型:选择题

(2012•湖北)设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,则=( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.1二维形式柯西不等式练习卷(解析版) 题型:选择题

已知x2+4y2+kz2=36,且x+y+z的最大值为7,则正数k等于( )

A.1 B.4 C.8 D.9

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.3反证法与放缩法练习卷(解析版) 题型:选择题

用反证法证明:“a>b”,应假设为( )

A.a>b B.a<b C.a=b D.a≤b

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.3反证法与放缩法练习卷(解析版) 题型:选择题

用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”则假设的内容是( )

A.a,b都能被5整除 B.a,b都不能被5整除

C.a,b不能被5整除 D.a,b有1个不能被5整除

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.3反证法与放缩法练习卷(解析版) 题型:选择题

用反证法证明命题:“已知a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是( )

A.方程x2+ax+b=0没有实根

B.方程x2+ax+b=0至多有一个实根

C.方程x2+ax+b=0至多有两个实根

D.方程x2+ax+b=0恰好有两个实根

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.2综合法与分析法练习卷(解析版) 题型:选择题

关于综合法和分析法说法错误的是( )

A.综合法和分析法是直接证明中最基本的两种证明方法

B.综合法又叫顺推证法或由因导果法

C.分析法又叫逆推证法或执果索因法

D.综合法和分析法都是因果分别互推的两头凑法

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 1.2绝对值不等式练习卷(解析版) 题型:选择题

(2014•江西二模)若存在x∈R,使|2x﹣a|+2|3﹣x|≤1成立,则实数a的取值范围是( )

A.[2,4] B.(5,7) C.[5,7] D.(﹣∞,5]∪[7,+∞)

 

查看答案和解析>>

同步练习册答案