精英家教网 > 高中数学 > 题目详情

已知x2+4y2+kz2=36,且x+y+z的最大值为7,则正数k等于( )

A.1 B.4 C.8 D.9

 

D

【解析】

试题分析:由柯西不等式可得 (x2+4y2+kz2)(1++)≥(x+y+z)2,再根据x+y+z的最大值为7,可得36(1++)=49,由此求得正数k的值.

【解析】
由题意利用柯西不等式可得 (x2+4y2+kz2)(1++)≥(x+y+z)2,

即 36(1++)≥(x+y+z)2.

再根据x+y+z的最大值为7,可得36(1++)=49,求得正数k=9,

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源:[同步]2014年新人教A版选修4-6 1.1整除练习卷(解析版) 题型:选择题

下列各数中最小的数是( )

A.85(9) B.210(6) C.1000(4) D.11111(2)

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.3排序不等式练习卷(解析版) 题型:解答题

设a,b,c为正数,利用排序不等式证明a3+b3+c3≥3abc.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.1二维形式柯西不等式练习卷(解析版) 题型:填空题

(2014•陕西三模)已知a、b、c、d均为正数,且a2+b2=4,cd=1,则(a2c2+b2d2)(b2c2+a2d2)的最小值为 .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.1二维形式柯西不等式练习卷(解析版) 题型:选择题

已知x,y均为正数,θ∈(),且满足=+=,则的值为( )

A.2 B.1 C. D.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.1二维形式柯西不等式练习卷(解析版) 题型:选择题

(2014•孝感二模)已知x,y,z均为正数,且x+y+z=2,则++的最大值是( )

A.2 B.2 C.2 D.?3

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.3反证法与放缩法练习卷(解析版) 题型:选择题

用反证法证明:“方程ax2+bx+c=0,且a,b,c都是奇数,则方程没有整数根”正确的假设是方程存在实数根x0为( )

A.整数 B.奇数或偶数 C.正整数或负整数 D.自然数或负整数

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.2综合法与分析法练习卷(解析版) 题型:填空题

下列表述:

①综合法是执因导果法;

②综合法是顺推法;

③分析法是执果索因法;

④分析法是间接证法;

⑤反证法是逆推法.

正确的语句有是 (填序号).

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 1.2绝对值不等式练习卷(解析版) 题型:选择题

(2013•红桥区二模)集合A={x||x﹣2|≤2},B={y|y=﹣x2,﹣1≤x≤2},则A∩B=( )

A.{x|﹣4≤x≤4} B.{x|x≠0} C.{0} D.∅

 

查看答案和解析>>

同步练习册答案