精英家教网 > 高中数学 > 题目详情
9.已知扇形的半径为R,面积为2R2,则这个扇形圆心角的弧度数为(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.2D.4

分析 利用扇形的面积,由此结合题中数据,建立关于圆心角的弧度数α的方程,解之即得该扇形的圆心角的弧度数.

解答 解:设扇形圆心角的弧度数为α,
∵扇形所在圆的半径为R,且该扇形的面积为2R2
则扇形面积为S=$\frac{1}{2}$α×R2=2R2
解得:α=4.
故选:D.

点评 本题在已知扇形的面积和半径的情况下,求该扇形圆心角的弧度数.着重考查了弧度制的定义和扇形面积公式等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知极坐标系的极点在平面直角坐标系的原点O处,极轴与x轴的正半轴重合,且长度单位相同.直线l的极坐标方程为ρ=$\frac{9}{\sqrt{2}sin(θ+\frac{π}{4})}$,点P(1+cos α,sin α),参数α∈[0,2π).
(1)求点P轨迹的直角坐标方程 
(2)求点P到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若$f(\sqrt{x}-1)=x-\sqrt{x}$,则f(x)=x2+x(x≥-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知扇形OAB的圆心角α为120°,半径长为6,则$\widehat{AB}$的弧长为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(I)已知f(2x+1)=3x-2且f(a)=4,求a的值.
(2)已知f(x)=ax2+bx+c,若f(0)=0,且f(x+1)=f(x)+x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知等差数列{an}中,若-2<a2<2,1<a5<8,则S7的取值范围是($\frac{21}{4}$,42).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线y=2x是△ABC中∠C的平分线所在的直线,若点A、B的坐标分别是(-4,2),(3,1),则点C的坐标为(  )
A.(-2,4)B.(-2,-4)C.(2,4)D.(2,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2sin(3x-$\frac{π}{3}$),x∈R.
(1)用五点法作出该函数在长度为一个周期上的简图;
(2)求函数f(x)的单调区间和对称轴方程;
(3)写出使得不等式f(x)≥$\sqrt{3}$成立的x值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.过点P(3,6)且被圆x2+y2=25截得的弦长为8的直线方程是(  )
A.3x-4y+15=0B.4x-3y+6=0C.4x-3y+6=0或x=3D.3x-4y+15=0或x=3

查看答案和解析>>

同步练习册答案